
Preliminary Results of Global Time Petri Net Analysis Applied
to Embedded Software Prototyping

Leticia Mara Peres1, Eduardo Todt1, Luis Allan Kunzle1

1Computer Science Department, UFPR, Curitiba, Brazil

lmperes@inf.ufpr.br,todt@inf.ufpr.br,kunzle@inf.ufpr.br

Abstract. We propose in this paper an approach based on Time Petri Nets (TPN)
to analyze time aspects and to schedule embedded software during the prototyp-
ing activities. Firstly, a TPN that represents the interaction between system
tasks is modeled using Petri net design patterns. Secondly, a class graph is built
with the Global Time Method (GTM) and interval algebra operations. Finally,
firing sequences on GTM graph is found. The firing sequences represent be-
havior itineraries of software, and their global time based on cyclic scheduling,
fixed priority and earliest deadline first scheduling policies. The example shows
simple and precise time analysis of behavior itineraries which use a powerful
theory based on interval algebra, different of conventional models.

1. Introduction

Real time embedded systems are constrained about functionalities and resources. In these
systems, time constraints are so important as functional constraints.

Petri nets (PN) and their algebraic properties are used to model and to analyze
systems involving parallelism, concurrency and synchronization. Several extensions of
the basic formalism have been proposed to increase their power of modeling. In this
work we are interested in Time Petri nets (TPN), where quantitative time restrictions can
be considered [1]. The classic technique of analysis is based in an enumerative method
to generate the reachable state space of a TPN [2]. This method finds the relative time
interval which the system remains in each state, being therefore efficient to verify net
properties and to analyze time constraints relative to a given class. This method itself does
not present global time information of the net behavior since its initial marking. In order to
obtain more accurate results, Dill [3] describes data structures Difference Bounds Matrix
(DBM) and proposes a method for using delay information in state graph verification
of finite state concurrent systems. These structures have been used in association with
model checking and timed automata approaches [4], [5], [6]. We propose a global time
alternative method based on interval algebra.

TPN are used in different applications of embedded system verification, schedul-
ing and synthesis methods. Cortes et al. [4] define a method of embedded software mod-
eling and verification using PRES+, a type of TPN. Lime and Roux [5] propose SETPN
to model real-time systems, especially embedded systems. They present a set of PN de-
sign patterns to model tasks with preemptive scheduling. In [6], Lime and Roux use their
scheduling TPN design patterns of [5] to model tasks and deal with Fixed Priority and
Earliest Deadline First policies.

12th Brazilian Workshop on Real-Time and Embedded Systems 187

We present in this paper the Global Time Method (GTM) which is anapproach to
generate a new type of class graph for TPN. This method finds relative and global time
information about the current state of the net. The global time information is correct for
both limits of time interval of any class, even when the net represents concurrency among
events [7]. The remainder of this paper is organized as follows. The Section 2 defines
basic concepts of interval operations, TPN and class graph. Section 3 establishes the
class graph based on GTM, and presents an example of application. Section 4 presents
an application of GTM on the context of embedded software scheduling, while Section 5
concludes the article.

2. Basic Concepts
Let two rational numbers,a andb, such thata ≤ b. We denote[a, b] as the set{x ∈ R :
a ≤ x ≤ b}, defined as closed interval froma to b. An interval [c, d] is denoted as not
proper whend < c, with c andd rationals. Given the intervals[a, b] and[c, d], proper or
not proper, we define the following operations:[a, b]+[c, d] = [a+c, b+d]; [a, b]−[c, d] =
[max{0, a − d}, max{0, b − c}]; [a, b] ⊖ [c, d] = [max{0, a − c}, max{0, b − d}]. The
interval subtraction⊖ is used to adjust time coefficients which can be represented by not
proper time intervals.

A Time Petri net (TPN) is a tupleTPN = (P, T, Pre, Post, M0, I) [8], where:
• P is a finite set of places,p ∈ P ,
• T is a finite set of transitions,t ∈ T ,
• Pre is an input application such asPre : (P × T) → N,
• Post is an output application such asPost : (P × T) → N,
• M0 is the initial marking, and
• I : T → (Q+ × (Q+ ∪ {∞})) such as(t, e(t)) ∈ I ande(t) = [a, b], wherea and

b are positive rational numbers.

A marking is an assignment of marks to places of the net. The marking of a
placep ∈ P is denotedM(p). A TPN has one static time intervale(t) = [a, b], with
a ≤ b, associated to each transitiont ∈ T . The limitsa andb represent, respectively, the
earliest and the latest possible firing time of transitiont, counted from the instant when
t is enabled (∀p, M(p) ≥ Pre(p, t)). Whent fires in a markingMk−1 a new marking of
the net is given by markingMk = Mk−1 + Post(t) − Pre(t) (ck−1[tf > ck).

A state classck = (Mk, Wk), whereMk is the current marking of the TPN ob-
tained by the firing of a transitiont. Wk is the set of time information for this class. A
transitiont, enabled in a classck, is apersistenttransition inck if t was enabled in a class
ck−1 andt did not fired inck−1. A transitiont, enabled inck, is newly enabledif t was not
enabled in classck−1 or, the firing oft originated the classck and it was re-enabled inck.

The state class graph is a directed graph where each node is a state class and each
arch is labeled with one transition. The root node of class graph is the start classck with
levelk = 0 and has the initial markingM0 of TPN.

3. Global time method (GTM)
The information setWk of classck has two types of time information: relative and global.
The relative time information is the accumulated time for each transition since its en-
abling in classck. Global time information refers to the accumulated time since the initial
marking (classc0).

188 Proceedings

Let rk(ti) a relative time interval of a transitionti calculated in a classck such that
ck−1[tf > ck, and defined as:

rk(ti) =

{

e(ti) if ti is newly enabledin ck

rk−1(ti) − rk−1(tf) if ti is persistentin ck

The relative time intervalrk(ti) of each enabled transitionti of a classck is used
to identify which ones are fireable. A transitiontf with rk(tf) = [af , bf] is fireable inck

if, and only if, tf is enabled inck and there is not another transitionti with rk(ti) = [ai, bi]
enabled inck such thatbi < af .

The persistence adjustment coefficientack(ti) of an enabled transitionti in a class
ck such thatck−1[tf > ck, is defined as:

ack(ti) =

rk−1(ti) ⊖ rk−1(tf) if ti andtf are both newly enabled inck−1

ack−1(ti) ⊖ rk−1(tf) if ti is persistent andtf is newly enabled both inck−1

rk−1(ti) ⊖ ack−1(tf) if ti is newly enabled andtf is persistent both inck−1

ack−1(ti) ⊖ ack−1(tf) if ti andtf are both persistent inck−1

The persistence adjustment coefficientack(ti) prevents the increase of imprecision
to computing the global time.

The global time intervalgk(ti) of a fireable transitionti in a classck such that
ck−1[tf > ck is:

gk(ti) =

e(ti) if k = 0, i.e. if is the initial class

gk−1(tf) + rk(ti) if k 6= 0 andti is newly enabled inck

gk−1(tf) + ack(ti) if k 6= 0 andti is persistent inck

The global time intervalgk(ti) is counted from the initial marking until the firing
instant ofti in classck.

Let tf be the fired transition in a classck such thatck[tf > ck+1. The up-
per bound of global time intervalgk(tf) = [af , y] of fired transitiontf , must be ad-
justed by the lowest upper bound of intervals calculated to allti in classck, where
y = min{bi | gk(ti) = [ai, bi], ∀ti fireable inck}.

The successive firing of two or more transitions in a TPN from any classck to any
other classck+n, also called firing sequence, is represented byck[s > ck+n. The global
time of a firing sequences of c0[s > ck is the resulting of global time intervalgk−1(tf),
beingtf the last transition fired to reach classck, that is,ck−1[tf > ck.

The class graph can express the staying time in each class, i.e., how long the
system remains in the state represented by the class. The staying time of a net in a certain
reachable classck is given by: ik = [x, y], wherex = min{ai | rk(ti) = [ai, bi]} and
y = min{bi | rk(ti) = [ai, bi]}, ∀ti fireable inck.

4. Application

We based the application of GTM on the work of Lime and Roux, 2009 [6]. It defines a
special TPN with scheduling layer and, among other things, allows to map each place of

12th Brazilian Workshop on Real-Time and Embedded Systems 189

the net to a task. We propose to use parts of this layer to model TPN according design
patterns of work of Lime and Roux, 2003 [5], associating tasks to transitions and places
of the net. Then, we generate the GTM state class graph and analyze firing sequences that
satisfies “Earliest Deadline First” and “Fixed Priority” scheduling policies.

Let, according [6]:

• τ ∈ Tasks, being Tasksthe set of tasks of the system, where there is no task
migration between processors.

• Sched:Procs7→ {FP,EDF} the function that maps a processor to a scheduling
policy, being FP “Fixed Priority” and EDF “Earliest Deadline First” ;

• Π: Tasks7→ Procsthe function that maps a task to its processor;
• ̟: Tasks 7→ N, for Sched(Π(τ)) = FP , gives the priority of the task on the

processor;
• δ: Tasks7→ (Q+ × (Q+ ∪ {∞})), for Sched(Π(τ)) = EDF , gives the deadline

interval of the task on relative to its activation time.

In order to map each place of the TPN to a task, we use the functionγ : P 7→
Tasks∪{φ}, whereφ denotes that the place is not mapped to any real task. We, as in
[6], assume that for each transition, there is at most one placep such thatp ∈ Pre(t)
andγ(p) 6= φ. If ∀p ∈ Pre(t), γ(p) = φ, thent is not bound to any real task and we
say that it ispart of φ (denoted byγ(t) = φ). Otherwise, for each transition t, we say
that t is part of the taskτ , and we denote itt ∈ τ if one of its input places is mapped to
τ : t ∈ τ ⇔ ∃p ∈ Pre(t), s.t.γ(p) = τ . So,γ(t) is the task s.t.t ∈ τ .

As in [6], each taskτ is thus modeled by a subnet of the TPN composed of places
mapped toτ by γ and of transitions with static time, which are parts ofτ . As in [6]
we assume that at most one instance of each task is active at a given instant, which is
expressed by the restriction that at most one place mapped toτ by γ is marked at a given
instant. LetB(τ) be the set of transitions whichstart the taskτ and similarly, letE(τ)
be the set of transitions which terminateτ . These two sets are user-defined as part of the
modeling phase. After TPN was modeled, we propose generate a GTM state class graph,
as presented at section 3. The definitions of scheduling layer reflect on TPN and on each
scheduling policy.

The mapping between scheduling policies and GTM graph defines a criterion for
path enumeration on GTM state class graph, where the path is the firing sequence, satisfy-
ing some scheduling policy. We have established criteria for “Earliest Deadline First” and
“Fixed Priority” scheduling policies. ForSched:Procs7→ {CE}, where CE is “Cyclic Ex-
ecutive”, the TPN model represents only one task which is typically realized as an infinite
loop in main(). BecauseCE has not a specific criterion in order to satisfy, this policy is
achieved only by modeling TPN and it is not necessary formalize this function in relation
to GTM state class graph enumeration.

Fixed Priority (Sched(Π(γ(t))) = FP): After class graph building, each transi-
tion ti has a priority of the task on the processor associated to it (̟(ti)). Then, the function
̟: Tasks7→ N guides the firing sequence enumeration. We choose the fireable transition
which has the higher priority. At the end of this enumeration, we already have the total
time for a firing sequence according GTM. In the case of tasks with the same priority at
some point, one of these criterion can guide the firing sequence enumeration between the
processes with the same priority: a FIFO choice; an earliest deadline first considering the

190 Proceedings

[3,5]

p4

p3
1 2

p1

[2,3] [1,4]

p2

[1,2]

t1 t3

t4t2

ττ

Figure 1. TPN of two tasks on one processor, from [5]

t4
t1

t3

t2

t3

t1

t3

t2

t2

t4

t4

t4

t2

C0_0, g=(0,0)

C2_3, g=(3,5)

t3)r=(0,1),g=(3,7)

C2_4, g=(3,5)

t2)r=(0,2),g=(3,5)

t4)r=(3,5),g=(0,0)

C2_5, g=(3,6)

t2)r=(1,2),g=(4,8)

t4)r=(1,5),g=(4,8)t4)r=(3,5),g=(0,0)

t1)r=(0,2),g=(3,6)

C1_2, g=(1,3)

t3)r=(0,2),g=(3,5)

t2)r=(1,2),g=(3,5)

C1_1, g=(2,3)

t3)r=(1,4),g=(1,3)

C3_6, g=(3,7)

t4)r=(3,5),g=(6,12)

C3_7, g=(3,5)

t4)r=(1,5),g=(6,10)

C3_8, g=(4,8)

t4)r=(0,4),g=(4,8)

C3_9, g=(4,8)

t2)r=(0,1),g=(4,8)
C4_13, g=(4,8)

C4_12, g=(4,8)

C4_11, g=(6,10)

C4_10, g=(6,12)

t1)r=(2,3),g=(2,3)

Figure 2. Class graph of TPN representing two tasks on one processor, of Fig. 1

static timee(ti) for each transitionti, as we present in the following section; and a random
choice.

Earliest Deadline First (Sched(Π(γ(t))) = EDF): Another type of firing se-
quence can be enumerated on class graph, using the Earliest Deadline First scheduling
policy. Then, the functionδ: Tasks7→ (Q+ × (Q+ ∪ {∞})) guides this enumeration.
Our criterion is to choose the transition which has the lower deadline given byδ(τ) as
following. Let δ(τ) of a transitionti calculated in a classck such thatck−1[tf > ck, and
defined as:δ(τ) = LFT (rk(ti)). The latest firing time (LFT) of the timerk(ti) for each
transitionti is the guide for firing sequence enumeration. As the FP policy, at the end of
enumeration already has the total time for a firing sequence.

Considering the TPN of Figure 1. The taskτ1 has priority̟ = 1 and one pre-
emption point. The taskτ2 has also one preemption point, but priority̟ = 2. Then,
̟(t1) = 1, ̟(t2) = 1, ̟(t3) = 2 and̟(t4) = 2. The TPN class graph according GTM
is presented in the Figure 2. ForSched(Π(τ)) = FP , the firing sequence is:t3, t1, t4, t2.
It is interesting to note thatt1 is the only one fireable in the classC2 5 (class C, at level
2, with unique identification 5), event4 being enable andt3 being in the same task that
t4; t4 executes aftert1 becauset4 has highest priority. The global time of this sequence
is g4 13 = [4, 5]. ForSched(Π(τ)) = EDF , the firing sequence can bet1, t2, t3, t4, with
global timeg4 10 = [6, 9], or t1, t3, t2, t4, with global timeg4 11 = [5, 9].

5. Conclusions

GTM avoids the imprecision increase in time information when analyzing transition firing
sequences which represents the time interval of system behavior itineraries. This happens

12th Brazilian Workshop on Real-Time and Embedded Systems 191

when the modeled system presents many concurrent or persistent transitions. Also, GTM
state classes describe intervals in both global, based on the simulation beginning, and
relative, based on the class entry moment, time information. This increases the analysis
power of our approach.

The essence our approach is to verifiy scheduling scenarios generated using GTM
from TPN modeled using design patterns. This design patterns represent a set of tasks
and their interactions as proposed by [5] and can be tasks on one processor, cyclic tasks
synchronizedvia a semaphore, semaphore for mutual exclusion and CAN bus access.

The main contribution of our work is to apply the global time method to real-time
software based on tasks with fixed priority and earliest deadline first. The main limitation
of the proposed approach is the endless enumeration of classes in cyclic nets, according
to the indefinite increase the global time. For the application in the context of prototyping
this problem is currently treated by limiting the number of execution cycles of tasks,
reflected by the class levels during the generation of graph. Even with this limitation
the analysis is still useful as corresponds to the repetition of the initial critical instant for
real-time systems based on cyclic tasks.

References
[1] P. Merlin, “A study of recoverability of computer systems,” Ph.D. dissertation, University

of California IRVINE, 1974.

[2] B. Berthomieu and M. Menasche, “A state enumeration approach for analyzing time petri
nets,” in3rd European Workshop on Applications and Theory of Petri Nets, Varenna,
Italy, sep 1982.

[3] D. L. Dill, “Timing assumptions and verification of finite-state concurrent systems,” in
Proceedings of the International Workshop on Automatic Verification Methods for
Finite State Systems. London, UK: Springer-Verlag, 1990, pp. 197–212.

[4] L. A. Cortés, P. Eles, and Z. Peng, “Verification of embedded systems using a Petri net
based representation,” inISSS ’00: Proceedings of the 13th international symposium
on System synthesis. Washington, DC, USA: IEEE Computer Society, 2000, pp.
149–155.

[5] D. Lime and O. H. Roux, “Expressiveness and analysis of scheduling extended time
Petrinets,” in5th IFAC Int. Conf. on Fieldbus Systems and Applications,(FET’03).
Aveiro, Portugal: Elsevier Science, Jul. 2003, pp. 193–202.

[6] ——, “Formal verification of real-time systems with preemptive scheduling,”Journal of
Real-Time Systems, vol. 41, no. 2, pp. 118–151, 2009.

[7] E. A. Lima, R. Lüders, and L. A. Künzle, “Uma abordagem intervalar para a
caracterização de intervalos de disparo em redes de petri temporais,”SBA. So-
ciedade Brasileira de Autoḿatica, vol. 19, no. 4, p. 379, 2008, in Portuguese,
http://dx.doi.org/10.1590/S0103-17592008000400002.

[8] B. Berthomieu and M. Diaz, “Modeling and verification of time dependent systems using
petri nets,”IEEE Transactions on Software Engineering, vol. 17, no. 3, pp. 259–273,
March 1991.

192 Proceedings

