
MASIM: A Tool for Simulating Mobile Agent Applications on
Wireless Sensor Networks

Marcos Camada1, Carlos Montez1, Flávio Assis2

1Pós-Graduação em Eng. Automação e Sistemas – Univ. Federal de Santa Catarina (UFSC)
88040-900 – Florianópolis – SC – Brazil

2Programa de Pós-Graduação em Mecatrônica – Univ. Federal da Bahia
40170-110 – Salvador – BA – Brazil

{mcamada, montez}@das.ufsc.br, fassis@ufba.br

Abstract. A mobile agent is an autonomous software entity that is able to mi-
grate between nodes of a distributed system, carrying its code and execution
state. Recently, mobile agents have been proposed to be used in wireless sen-
sor networks, as an approach to reduce energy consumption of wireless sensor
nodes. The advantages provided by mobile agents, however, depend on specific
application aspects and on the particular way how they are used to accom-
plish some task. Due to the lack of suitable tools for the simulation of mobile
agent-based applications over wireless sensor networks, this paper introduces
a tool for this purpose, called MASIM. This tool extends the toolboxes of MAT-
LAB/TrueTime. This paper describes the general features of MASIM and illus-
trates its use to a specific scenario, where a protocol based on mobile agents
and one based on message passing are compared.

1. Introduction
A Wireless Sensor Network (WSN) is a type of wireless network whose nodes are com-
puting devices equipped with sensors, such as temperature, light or humidity sensors
[Yu et al. 2004]. These networks might be composed of tens or even thousands of nodes,
that can be deployed randomly in a environment, present mobility and be self-organizable
[Malik and Shakshuki 2007]. Sensor nodes are typically small autonomous devices with
strongly limited processing power and memory capacity, with a short-range transceiver
and with non-replaceable batteries [Ye et al. 2001]. Therefore, they should be designed
so as to spend as less energy as possible, so that network lifetime can be increased.

Mobile agents have been proposed to be used in WSN as an approach to conserve
energy of nodes (see, for example, [Chen et al. 2006]). A mobile agent is an autonomous
software entity that has as its main feature the ability to migrate between nodes, carrying
its code and execution state. Mobile agents may provide additional advantages such as
reduction of network load, complexity reduction in the design of interfaces provided by
nodes, and capacity to autonomously adapt to changes in the system, thus contributing
to systems robustness and fault tolerance [Lange and Oshima 1999]. However, the ad-
vantages provided by mobile agents depend on specific application aspects and on the
particular way how they are used to accomplish some task [Jansen et al. 1999].

Simulation is one important tool to help evaluating the potential advantages of
using mobile agents in specific application scenarios. There are currently many simula-

12th Brazilian Workshop on Real-Time and Embedded Systems 111



tion tools for WSN, but, to the best of our knowledge, none of them provides specific
abstractions and functionality to simulate mobile agents over WSN.

This paper describes a tool to fulfil this need. We describe MASIM (Mobile Agent
SIMulator in Wireless Sensor Network), a toolbox for simulating mobile agents on MAT-
LAB [MathWorks 2009]. MASIM provides abstractions and functionality for modelling
mobile agents, their environment and interactions between the many system components
involved. The model used in MASIM is compatible with the mobile agents model de-
fined by FIPA (Foundation for Intelligent Physical Agents) [FIPA 2004] and OMG (Ob-
ject Management Group) [OMG 1997], two important standardized efforts in the context
of mobile agent systems. MASIM uses an energy model that defines how each component
spends energy which is based on the hardware specification of Mica2 [Crossbow 2009],
one of the most important sensor node platforms. MASIM can also be easily extended to
use energy models based on different platforms. We believe that extending MATLAB has
the particular advantage of adding functionality to a system which is very frequently used
for computer simulation.

This paper is structured as follows. In Section 2 we compare our approach to other
existing wireless network simulation environments. In Section 3 we describe MASIM. In
Section 4 we describe a particular use of MASIM to evaluate the advantages that mobile
agents might bring for a specific scenario. Finally, in Section 5 we conclude the paper.

2. Related Work
MATLAB is a tool for the development and analysis of algorithms and data visualization
with main focus on numeric computation [MathWorks 2009]. The MATLAB environ-
ment provides a set of libraries, called toolboxes, which can be developed in the native
language of MATLAB or C++ MEX (based on ANSI C++). MATLAB can be used in-
tegrated with Simulink, which provides a graphical environment and a set of libraries for
the design, simulation, testing and implementation of different types of systems, includ-
ing communication, control and signal processing systems [Simulink 2009]. Simulink
can be extended by libraries. A library of particular importance for this work is TrueTime
[Ohlin et al. 2007]. TrueTime provides resources for the simulation of real-time control
systems. It provides a set of functions and programming building blocks for specify-
ing such systems: kernel block, network block, Wireless Network and a battery block
[Ohlin et al. 2007]. MATLAB with Simulink and TrueTime thus provide resources for
defining an energy model for a WSN and support IEEE 802.15.4 [IEEE 2006], which is
becoming a de facto standard for the physical layer and medium-access control sublayer
of sensor networks.

There are currently many different simulation tools for wireless sensor networks.
Some of them, closely related to our system, are: TOSSIM [Levis et al. 2003], Atemu
[Polley et al. 2004], SENSE [Chen et al. 2004], ns-2 [Fall and Varadhan 2008] and J-Sim
[Sobeih et al. 2005].

TOSSIM is a discrete event simulator for wireless sensor nodes which are based
on the TinyOS operating system. TOSSIM simulates the behavior of hardware compo-
nents, such as the ADC, clock and EEPROM memory, the flash boot sequence, and com-
ponents of the wireless communication protocol stack. The main feature of this simulator
is the fact that the code used for simulation can be installed with no modifications on real

112 Proceedings



devices.

Atemu (Atmel Emulator) is a sensor network simulator which is based on the
standard Mica2 [Crossbow 2009] architecture and the AVR (Advanced Virtual RISC) mi-
croprocessor (although it can simulate heterogeneous WSN). The system provides com-
ponents to be used in the specification of the simulation scenario, such as processor, clock
and radio device. It allows the simulation of low-level operations on sensor nodes.

SENSE is a discrete event simulator for sensor networks which is based on the
IEEE 802.11 standard with DCF (Distributed Coordination Function) as its physical /
MAC sublayer. This simulator implements a battery model, which enables a control over
energy spent based on the used electrical current.

NS-2 (Network Simulator 2) is a discrete event simulator that has a broad sup-
port for simulation of wired and wireless networks. Its support for modelling energy is,
however, very limited.

J-Sim is a simulation tool for WSN developed in Java. It provides components
for modelling typical WSN elements, such as battery, processor and radio models, and a
phenomena generator. It is based on the IEEE 802.11 standard at the physical layer and
MAC sublayer.

Among the systems cited above, MATLAB was the system which provided most
adequately basic building blocks for constructing MASIM, specially due to its support for
IEEE 802.15.4 and bulding blocks for specifying energy models.

3. MASiM
In this section we describe the main features and some implementation aspects of
MASiM. MASiM was built using MATLAB with Simulink and TrueTime. We first pro-
vide a description of the system from a conceptual point-of-view, presenting the adopted
WSN model (Section 3.1) and agent model (Section 3.2). We then describe the main
system classes (Section 3.3), the system task model (Section 3.4).

3.1. WSN Model

In MASiM, a WSN is composed of two types of nodes: sensor node and base station.
A WSN might have more than one base station. Base stations and sensor nodes have
different hardware and software characteristis, but all sensor nodes are homogeneous.
All nodes, including the base station, are capable of moving in the environment. Thus
communication links between nodes are dynamic.

The main function of a sensor node is to monitor some physical characteristic of
an environment and transmit the sensed data to the base station through wireless links.
Each node maintains information about its energy level, its position in the environment
(localization) and about time. The clocks of nodes are all synchronized. Each node is
uniquely identified in the network.

Sensor nodes are organized in a mesh network (mesh) as defined by Zigbee1.
Not all sensor nodes might reach the base station in a single communication hop. Thus,
communication between sensor nodes and the base station will be primarily multihopping.

1http://www.zigbee.org

12th Brazilian Workshop on Real-Time and Embedded Systems 113



The range of the base station radio device is assumed to be larger than the range of sensor
node radios. Thus, the resulting communication network is asymmetric, in the sense that
a base station might reach a sensor node with a single hop, but this node might not reach
the base station directly. The nodes are aware of their active neighbouring nodes and each
node periodically broadcasts its location to its neighbours. Additional data, such as the
energy level of the node, might be piggybacked in these periodical messages.

The network uses IEEE 802.15.4 without beacon [IEEE 2006] as the physical
layer and MAC (Medium Access Control) sublayer. Since there is no beacon, there is
no formation of superframe, and (unslotted) CSMA/CA (Carrier Sense Multiple Access /
Collision Avoidance) is used as the medium access control mechanism.

3.2. Mobile Agent Model
The mobile agent model adopted in MASiM is based on the model defined by FIPA
[FIPA 2004]. A mobile agent can be in one of the following states: Started, Active,
Suspended, and Waiting. The meaning of these states and the possible state transitions
are described below.

On each node, mobile agents execute on logical places called here agencies. From
a functional point-of-view, an agency represents the needed functionality that must be
present on a node so that agents can execute there. We will, however, use the terms
agency and node here interchangeably to denote the place where agents execute.

A mobile agent is instantiated at a node in the Start state. In this state, the agent
receives its mission and its unique identifier. The user of MASiM is responsible for ensur-
ing the uniqueness of this identifier. When the agent starts execution, it enters the Active
state.

While at the Active state, an agent performs the operations defined in its mission.
Two special operations are the movement and cloning operations. The implementation
of these operations involves the execution of a specific protocol for mobility and cloning.
Before an agent can move from an agency to another or before an agent can be cloned at
a specific node, a negotiation protocol is carried out between the agency where the agent
currently is, which will be called here the original agency, and the target agency, i.e., the
agency to where the agent wants to move or the agency where the new instance of the
agent will be created. The agent stays in the Suspended state from the beginning of the
movement or cloning process until its end.

The mobility protocol is illustrated in the activity diagram in Figure 1. This pro-
tocol starts when an agent calls a movement operation, defined at the interface of the
original agency. One of the parameters of this call is the identifier of the target agency.
At this point, the agent enters the Suspended state. The original agency sends a message
that contains a copy of the agent (code and state) for the target agency. The target agency
will check whether there are sufficient resources for instantiating the agent locally. If the
resources are sufficient, the agency creates the new instance of the agent. This instance is,
however, created in the Suspended state. The target agency then sends a message to the
original agency confirming that the movement operation was accepted. When the original
agency receives this message, it destroys the local instance of the agent and, after that,
sends a message to the target agency, allowing it to start the execution of its instance of
the agent. When the target agency receives this message, it resumes the execution of the

114 Proceedings



agent. The agent enters again the Active state. If the target agency does not have enough
resources to execute the agent, it sends a message to the original agency denying receiving
the agent.

Figure 1. Activity Diagram of the agent mobility protocol.

The cloning protocol is illustrated in the activity diagram depicted in Figure 2. It
begins in a way similar to the mobility protocol. The cloning operation has as one of its
parameters the identifier of the remote agency where the clone agent shall be created (the
target agency). After the agent calls the cloning operation, the agency where it is (original
agency) sends a message to the target agency. The agent enters the Suspended state. This
message contains the code and state of the agent to be cloned. The target agency checks if
there are enough resources to create the local copy of the agent. If yes, it sends a message
to the original agency confirming the creation of the clone agent, but, differently from the
mobility protocol, the agent instance at the target agency immediately enters the Active
state. When the original agency receives the confirmation message, the local instance of
the agent enters the Active state too. As in the mobility protocol, if there are not enough
resources for creating the agent at the target agency, the target agency sends a message to
the original agency denying creating the clone.

During an agent movement or cloning operation, the agent execution and data
state are transformed into a byte stream (a process called serialization), to be transfered
to the target node. At the target node, this byte stream is used to reinstantiate the agent or
create a new copy of it (deserialization) [Guenes et al. 2003]. This process is performed
by the TrueTime toolbox, and how this is done is out of the scope of this work. However,
the agent size can increase during its execution, due to data collected along its path. In
MASiM, the user is responsible for determining how the agent size will grow at each
migration.

An agent can send and receive messages. The process of receiving messages is
blocking. When an agent is waiting for a message, it enters the Waiting state. It only

12th Brazilian Workshop on Real-Time and Embedded Systems 115



Figure 2. Activity Diagram of the protocol for cloning the agent.

enters the Active state again when a message arrives. If a message is sent to a specific
agent at an agency and this agency is not at this agency, the message is discarded.

3.3. Main MASiM Classes

The main classes in MASiM are: NodeMessage, AgencyMessage, MessageInfor-
mationAgency, AgentMessage, InformationAgency, Phenomenon, Agent, Mission,
State, Nodes and Agency.

Nodes, agencies and agents communicate with each other by exchanging mes-
sages. In MASiM messages are exchanged asynchronously. If an entity sends a message
to another non-existent entity, the message is discarded. MASiM defines a message class
hierarchy. Three types of messages are defined: NodeMessage, AgencyMessage and
AgentMessage.

The NodeMessage class models messages exchanged between nodes. The main
attributes of this class are: sender, target and identifier. The sender refers to the node that
sends the message. The target attribute represents the node to which the message is sent.
The identifier attribute refers to the unique identifier of the message. The contents of a
NodeMessage is the data that is sent to the destination node. This content is represented
by the AgencyMessage.

An agency message, represented by the AgencyMessage class, like NodeMes-
sage, has as attributes the agency that sent the message (sender), the agency to which the
message is being sent (target) and the unique identifier of the message (identifier).

MessageInformationAgency is an abstract class that can be extended by the
classes Agent, InformationAgency and AgentMessage. The MessageInformationA-
gency class contains the phenomenon of the sender agency. Class Phenomenon repre-
sents the phenomenon that a given node monitors. This class has an attribute that identifies
the type of phenomenon (type).

The Agent class models the agents. This class has as attributes a unique (agent)
identifier, an attribute that contains the set of agencies that the agent has already vis-
ited (trace) and, if the agent is a clone of another agent, it contains also an attribute that

116 Proceedings



identifies the agency from where the agent was created (parentAgency). This reference
becomes obsolete if the original agent moves and does not send a message to its cloned
agents informing its new location. At the time an agent is instantiated, the agent receives
its identifier and its mission. The Agent class contains an additional attribute which rep-
resents this mission (mission). This attribute can not be changed.

In addition to its attributes, the Agent class has also the following methods: move,
to move the agent to a target agency; clone, to create a clone of the agent; sendMessage,
to send a message to one or a set of agents - if a particular agent is not specified, the
message is sent to all agents in a particular agency; getMessage, to receive a message;
enabled, to verify if the agent is in the Suspended state; and executeMission, to initiate
agent execution.

The mission of the agent is represented by the Mission class. This class has a
set of states. These states determine the set of operations that the agent must execute.
These operations are defined by the user. The Mission class contains an identifier of
the current execution state (currentStateIdentifier) and the identifier of the next execution
state (nextStateIdentifier) of the agent. These attributes are used to determine what state
the agent must enter after moving or being cloned.

The MessageAgent class models messages that an agent sends to another agent
at a certain agency. This class has the following attributes: sender, which identifies the
agent that has sent the message; receiver, which identifies the agent to which the message
is being sent; targetAgency, which identifies the agency where the receiver agent must be
to receive the message; and messageContents, which conveys the actual information to
be transmitted. When the target agency receives a message, it stores it in an appropriate
memory buffer, where the agent can read it. If the receiver agent is not at the target agency
when the message arrives, the agency discards the message. No confirmation of receipt is
sent to the sender agent.

The AgencyInformation class represents the data that AgencyMessage might
contain during the execution of the mobility or the cloning protocol.

The Node class represents a network node. Each node is uniquely identified by
the attribute identifier. The battery energy level of the node is represented by the attribute
battery. The value of the local clock of the node is represented by the attribute clock. The
attribute memory determines the amount of free memory available on the node. A node in
a WSN can be of one of two types: base station or sensor node. The base station is mod-
elled with the Node class. A sensor node is modelled with the SensorNode class. This
class extends the features of the Node class and contains an additional attribute, called
Sensor, which is the current value of the sensor. The type of phenomenon monitored by
the node is represented by the attribute phenomenon.

An agency is modelled by the Agency class. This class is uniquely identified
by the attribute identifier. The value of this attribute will match the same value of the
identifier of the node where the agency is. The methods it provides are used by agents
to access information about the resources of the node. To get information on the energy
level of the node, the method getEnergyLevel is invoked. The method getFreeMemory
returns how much free memory is available on the node. The method getValueSensor
returns the current value of the sensor. The type of phenomenon monitored by the node is

12th Brazilian Workshop on Real-Time and Embedded Systems 117



represented by the method getPhenomenon.

The role of the controller class Simulation is performed by MATLAB with
Simulink and the TrueTime toolbox. The Simulator is responsible for executing the
simulation, controlling time and the simulation variables, like the level of the nodes bat-
teries, nodes mobility and the execution of the methods of the network components.

In all classes described above there are methods for reading and writing all the
attributes of the class.

3.4. Programming Tasks

MASIM was programmed using C ++ MEX programming language and was based on
the resources provided by the TrueTime toolbox. The use of TrueTime requires that the
programming follow a model based on tasks, which can be periodic or aperiodic. A task
can communicate with other tasks through shared memory regions called Mailboxes. To
follow this programming model, MASIM tasks were organized into two groups: Node
Tasks and Agency Tasks. Node Tasks are those related to operations present in all nodes,
and Agency Tasks are those existing only in nodes that run the agency. Thus, the Node
Task are:

• Node’s Received Message Handler: aperiodic task triggered by an interrupt
when a message arrives. This task has the role of receiving and forwarding the
message to the task responsible for it;
• Neighborhood Message Handler: aperiodic task triggered by Node’s Received

Message Handler with a role to process messages with information about neigh-
boring nodes. This neighborhood information are stored in memory for the use of
agents;
• Simple Message Handler: task triggered by Node’s Received Message Handler

with a role of dealing with messages defined by a user. The way that this message
should be handled is specified by the user;
• Sent Message Handler: aperiodic task responsible for sending messages to an-

other node. This task is triggered after a particular task to put a information to be
sent in a Mailbox. This task gets the information and creates a message to be sent;
• Notification to the Neighborhood Node: periodic task whose role is to send

a message to neighboring nodes with information about the current node. The
information that are sent are: the energy level, the node identifier and coordinates.
This task puts these information in the Mailbox and triggers an event that activates
the task Node’s Received Message Handler. This last task will be responsible for
sending messages on the node to all neighboring nodes.

The tasks that have a role to perform operations related to the agency are as fol-
lows:

• Agency’s Received Message Handler: aperiodic task triggered by the Node’s
Received Message Handler. This task has the role of receiving and processing
messages in its Mailbox. If the message destination is the agency, this task will
process this message. This occurs when a message is related to mobility or cloning
protocol. However, if the message contains an agent, this task forwards it to Cre-
ator Agent task, which is responsible for instantiating the agent on the local node.

118 Proceedings



The message destination may a local agent. Thus, this message is forwarded to the
Controller Execution Agent task, which is responsible for delivering the message
to the agent, if one exists. Otherwise, this message is discarded;
• Creator Agent: aperiodic task triggered by the task Agency’s Received Message

Handler. This job role is to instantiate a particular agent that has been received
during mobility or cloning for the current node;
• Controller Execution Agent: periodic task whose role is to run the agents fol-

lowing a run queue. This task executes and controls the cycle of the mission of
each agent.

4. Assessment of The MASIM Tool through Simulation Scenarios

4.1. Manufacturing environment scenarios

Aiming to build scenarios with mobile agents in a distributed system, a manufacturing
environment was adopted, similar to that proposed by [Krishnamurthy and Zeid 2004].
In such environments, it is necessary to monitor the operation of various equipments,
collect data and forward them to a centralized operation room where decisions are taken
based on individual or collective information obtained by this monitoring.

A set of sensor nodes distributed in some factory environments can monitor equip-
ments, and mobile agents could be used both to collect data in a intelligent and selective
way and to convey information about the plant to destination (a base station). It was con-
sidered scenarios where a node can communicate directly with the base station only if it
is in a certain distance of the base station (they are neighbors). Moreover, there is the
possibility that there are unconnected nodes, that is, nodes without neighbors in the net-
work. Finally, the data collected can be related to information of alarms from equipment
malfunctioning, and there may be a need for a maximum time (deadline) for which this
information reaches the operations room, and the data has a freshness constraints.

Therefore, through the use of Simulink/Matlab files (MDL files) in MASIM, some
manufacturing scenarios were modeled based on two different approaches: (i) a simple
diffusion-based approach; and (ii) mobile agent-based approach.

4.1.1. First Approach: A Simple Diffusion Protocol (without mobile agents)

In this approach, when a node receives a message with a monitored event from another
node, it attaches the received data to its message and forwards it to neighbors. After
that, when the first message arrives to the base station, it is considered that the mission is
complete.

4.1.2. Second Approach: Agents that Moves Beyond The Range of Base Station

The protocol based on agents has the goal to achieve a trade-off between energy con-
sumption and network coverage (Figure 3). In State 0, there is an agent in the base
station that clones itself to all neighboring nodes. In State 1, clones choose to move to
their neighboring nodes of higher energy level until they find a particular node where the
target phenomenon was observed. When this happens, in State 2, each agent tries to send

12th Brazilian Workshop on Real-Time and Embedded Systems 119



a message to the agent in the base station. However, it is possible there may be a clone
agent far from the base station. In this case, this agent moves back toward base station,
until it reaches a node neighboring the base station, before it send the message:

To simplify the understanding of this algorithm, states State 3, 4, 5 and 6 only
carry out the operation to complete the mission of the agent. The States 4 and 5 handle
exceptions that may occur in the cloning and mobility, respectively. When the operations
of receiving target phenomenon and find phenomena are carried out successfully, the final
States 3 and 6 are invoked.

Figure 3. Specification of the agent’s mission.

4.2. Comparison of agent-based and message-based approaches

In order to exercise the simulator, both approaches based on agents and based on diffusion
messages were implemented with two densities of nodes: 50 and 100 nodes. For each
density, 20 simulations were performed, each one with the duration of 100s. In each
simulation, the nodes are redistributed randomly in area.

The nodes used in the simulations are based on the hardware configuration of the
Mica2. Thus, the energy source of the sensor nodes are two batteries with 3V and 27000J
of energy. These nodes were randomly scattered over a fully plan area of 300m2, and after
the deployment, the nodes are considered fixed (non-mobile nodes). In each simulation
scenario, it is also considered that only 10% of nodes monitors the target phenomenon.
The radio signal from the antenna has an operating range of 99m and there may be dis-
connected nodes in the network. In each node there is energy consumption due to data
processing and communication (sending and receiving messages). In this work, is not
considered the energy consumption due to sensor or actuator tasks. Thus, the receipt and
sending of one message and processing performed by the processor spends 16.62∗10−4J ,
9.6 ∗ 10−4J and 4.8 ∗ 10−4J , respectively [Polastre et al. 2004].

Simulations show that the proposed approach based on agents is the better choice
in respect to energy consumption (Table 1). There was a considerable increase in energy
consumption by the nodes in the approach based on diffusion, because, as the number of
nodes increase, the amount of messages received for each node also increase. However,
the diffusion approach is more effective in coverage, because, at the end of the simulation,
all nodes have been achieved by the protocol in all scenarios. The coverage parameter
means the amount of network nodes that were recognized by the base station through a

120 Proceedings



Table 1. Energy consumption and coverage.
Energy consumption Coverage

50 nodes 100 nodes 50 nodes 100 nodes
Agent-based 0,238J 0,239J 14% 12%

Diffusion-Based 0,418J 0,601J 100% 100%

specific protocol. The average coverage for the agent-based approach were 14% and 12%
for densities of 50 and 100 nodes, respectively.

In respect of time constraints, the diffusion-based protocol may be more effective
to attend tight deadlines, because messages arrive at base station in a minimum time (2s).
This value was much smaller than that obtained by agent-based approach (average of 15s).

5. Conclusions
This work aimed to develop a tool for simulating agents in Wireless Sensor Networks
called MASIM. With this tool it is possible to specify simulation scenarios using static or
mobile agents. The flexibility in MASIN was achieved through the provision of functions
and block diagrams, which facilitate the programming of scenarios and agents mission,
determining different behaviors of the agent during its lifetime.

The programming interface developed allows the use of functions and data struc-
tures facilitating users to program the simulation models: the network topology may be
defined using the block diagrams available; the programming of nodes and defining the
mission of agents are made through the C++ MEX; and mission of agents can be modeled
as a state machine. To exercise the simulator, showing its flexibility, was built simu-
lations of scenarios based on mobile agents and dissemination of messages in a WSN.
Results from these simulations shown possible advantages and disadvantages of using the
approach of mobile agents concerning energy saving and network coverage metrics.

As future work, the tool is going to allow the user to specify custom information
about the neighborhood. Moreover, it is going to allow the definition of custom protocols
for cloning and mobility of agent. It is expected too that the user is going to able to
program the settings using the MATLAB language, in addition to C++ MEX.

References
Chen, G., Branch, J., Pflug, M. J., Zhu, L., and Szymanski, K. (2004). Sense: A sensor

network simulator. http://www.cs.rpi.edu/ szymansk/papers/wpcn.04.pdf. Accessed
on Jan. 2010.

Chen, M., Kwon, T., Yuan, Y., and Leung, V. C. (2006). Mobile agent based wireless
sensor networks. Journal of Computers, 1.

Crossbow (2009). Mica2 - wireless measurement system. ”http://www.xbow.com/
products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.
pdf”. Accessed on Jan. 2010.

Fall, K. and Varadhan, K. (2008). The ns Manual. UC Berkeley and LBL and USC/ISI
and Xerox PARC.

FIPA (2004). Fipa agent management specification. ”http://www.netlib.org/
lapack”. Accessed on Jan. 2010.

12th Brazilian Workshop on Real-Time and Embedded Systems 121



Guenes, M. H., Tiersem, M. E., Yildiz, M., and Kuru, S. (2003). Performance analy-
sis of mobile agents using simulation. In Proc. of the Advanced Engineering Design
Conference (AED2003), Praga, Czech Republic.

IEEE (2006). Part 15.4: Wireless medium access control (mac) and physical layer (phy)
specifications for low-rate wireless personal area networks (wpans). Technical report,
IEEE Computer Society.

Jansen, W., Mell, P., Karygiannis, T., and Marks, D. (1999). Applying mobile agents to
intrusion detection and response. Technical report, National Institute of Standards and
Technology Computer Security Division, Washington, D.C, EUA.

Krishnamurthy, S. and Zeid, I. (2004). Distributed and intelligent information access in
manufacturing enterprises through mobile devices. In Journal of Intelligent Manufac-
turing, pages 175 – 186. Kluwer Academic.

Lange, D. B. and Oshima, M. (1999). Seven good reasons for mobile agents. Commun.
ACM, 42(3):88–89.

Levis, P., Lee, N., Welsh, M., and Culler, D. (2003). Tossim: accurate and scalable
simulation of entire tinyos applications. In Proc. of the 1st Int. Conf. on Embedded
Networked Sensor Systems, pages 126 – 137, Los Angeles, California, EUA. ACM.

Malik, H. and Shakshuki, E. (2007). Data dissemination in wireless sensor networks using
software agents. In Annual Int. Symp. on High Performance Computing Systems and
Applications, page 28, Saskatoon, Saskatchewan, Canadı̈¿1

2
. IEEE Computer Society.

MathWorks, T. (2009). MATLAB Getting Started Guide. The MathWorks, Inc.

Ohlin, M., Henriksson, D., and Cervin, A. (2007). TrueTime 1.5 - Reference Manual.
Department of Automatic Control, Lund University.

OMG (1997). Mobile agent system interoperability facilities specification. ”http://
www.omg.org”. Accessed on Jan. 2010.

Polastre, J., Hill, J., and Culler, D. (2004). Versatile low power media access for wire-
less sensor networks. In Proc. of the 2nd Int. Conf. on Embedded Networked Sensor
Systems, pages 95 – 107, Baltimore, MD, EUA. ACM.

Polley, J., Blazakis, D., McGee, J., Rusk, D., and Baras, J. (2004). Atemu: a fine-grained
sensor network simulator. In First Annual IEEE Comm. Society Conf. on Sensor and
Ad Hoc Communications and Networks, 2004. IEEE SECON 2004, pages 145 – 152.

Simulink (2009). Simulink 7 - Simulation and Model-Based Design. The MathWorks.
Accessed on January 2010.

Sobeih, A., Chen, W.-P., Hou, J. C., Kung, L.-C., Li, N., Lim, H., ying Tyan, H., and
Zhang, H. (2005). J-sim: A simulation and emulation environment for wireless sensor
networks. IEEE Wireless Communications magazine, 13:2006.

Ye, W., Heidemann, J., and Estrin, D. (2001). An energy-efficient mac protocol for wire-
less sensor networks. pages 1567–1576.

Yu, Y., Krishnamachari, B., and Prasanna, V. K. (2004). Issues in designing middleware
for wireless sensor networks. IEEE Network, 18:15 – 21.

122 Proceedings




