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Abstract. Virtualization has been widely adopted in data centers around the
world for improving resource usage efficiency; particularly helping to make
these computing environments more energy-efficient. Server virtualization al-
lows for on-demand allocation (using either migration or replication) of vir-
tual machines (VMs), which run the web applications and services, to physical
servers. In this paper, we measure and analyze the disruptive impact on the
QoS (quality-of-service) provided by the applications, in terms of server-side
response time and throughput, during dynamic allocation of virtual machines
in a server cluster. The response time of the web applications in the cluster is
adopted as our main QoS metric since it is crucial for qualifying the end-user
experience. In our experiments, we use Xen as the virtual machine manager
and Apache servers for running the web applications. Our results show that VM
replication with workload balancing may lead to reduced disruption impact on
the QoS measures when compared to VM migration.

1. Introduction

Virtualization has been widely adopted in data centers around the world for improv-
ing resource usage efficiency; particularly helping to make these computing environ-
ments more energy-efficient. Several virtual machine monitors or hypervisors have
been developed to support virtualization, e.g., VMware [Sugerman et al. 2001] and Xen
[Barham et al. 2003]. The key idea is that server virtualization allows for on-demand
configuration (either by migration or replication) of virtual machines (VMs), which run
the web applications and services, to physical servers. Concentrating applications and
services in a smaller number of servers, using this capability, helps to increase resource
utilization, allowing to reduce the use of computer resources and the associated power
demands.

In previous works [Petrucci et al. 2009, Petrucci et al. 2010], we have proposed
an optimization solution for power and performance management in virtualized server
clusters. The optimization deals with the problem of selecting at runtime a power-efficient
configuration and a corresponding mapping of the multiple applications running on top
of virtual machines to physical servers. The optimization decision also includes selecting
the best voltage/frequency combination for each physical server, which can be imposed
using DVFS (Dynamic Voltage and Frequency Scaling) support available in current pro-
cessors. We have experimented our optimization approach through simulations driven by
real workload traces. However, in practice, a problem that arises in this context is that
migration and replication activities in a virtualized environment may lead to disruption
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on the quality of service provided by the applications. For example, live migration mech-
anisms allow to make workload movements with a relatively short service downtime.
However, the quality-of-service of the running applications are likely to be negatively
affected during the migration activities [Voorsluys et al. 2009].

In this work, we consider a real virtualized cluster platform aimed at supporting
the deployment of web applications. We carry out a set of experiments with different test
scenarios to evaluate the application behavior during the course of migration and repli-
cation actions. We measure and analyze the disruptive impact on the QoS (quality-of-
service) provided by the applications, by means of server-side response time and through-
put, during dynamic allocation operations of virtual machines in a server cluster. The
response time of the web applications in the cluster is adopted as our main QoS metric
since it is crucial for qualifying the end-user experience. In our experiments, we use Xen
as the virtual machine manager and Apache servers for running the web applications. Our
results show that VM replication with workload balancing may lead to reduced disruption
impact on the QoS compared to VM migration.

The paper is organized as follows. The description of our virtualized cluster and
testbed is presented in Section 2. In Section 3, we present some experiments for evaluating
the response time impact during virtual machine migration and replication. Section 4
summarizes related works and Section 5 concludes the paper.

2. Virtualized cluster description
2.1. Architecture
Our target architecture (shown in Figure 1) consists of a cluster of replicated web servers.
The cluster presents a single view to the clients through a front-end machine, which dis-
tributes incoming requests among the actual servers that process the requests (also known
as workers). These servers run CentOS Linux 5.4 with Xen hypervisor enabled to support
the execution of virtual machines.

Figure 1. Server cluster architecture

The front-end machine is a key component in the architecture including three enti-
ties: (a) VM manager, (b) Load balancer, and (c) Optimizer. The VM Manager is imple-
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mented using the OpenNebula toolkit [OpenNebula 2010] which enables the management
of the VMs in the cluster, such as deployment and monitoring. The Load Balancer
implements a weighted round-robin scheduler strategy provided by the Apache’s
mod proxy balancer module [The Apache Software Foundation 2010]. Finally, the
Optimizer is designed to monitor and configure the virtualized cluster. It consists
of an external module implemented in Python that relies on the primitives provided by
the VM Manager and Load Balancer modules. The goal of the Optimizer is to
dynamically configure the processors (using DVFS) and allocate the applications over
the processor’s cluster, in order to reduce power consumption, while meeting the ap-
plication’s performance requirements (see details of the overall optimization scheme in
[Petrucci et al. 2010]).

2.2. Testbed

The testbed platform used to implement the proposed architecture is described in Figure
2. The web requests from the clients are redirected to the corresponding VMs that run the
web servers on physical machines called workers. Each VM has a copy of a simple CPU-
bound PHP script to characterize a web application. We define two different applications
in the cluster, named App1 and App2. To generate the workload for each application,
we use two machines with the httperf tool. The load generator machines camburi and
cumulus (two Intel Pentium 4 2.80GHz, 1GB RAM, Ubuntu Linux 9.04) are physically
connected via a gigabit switch. The worker machines maxwell (Intel Core i5 2.67GHz,
8GB RAM, CentOS 5.4) and edison (Intel Core i7 CPU 2.67GHz, 8GB RAM, CentOS
5.4) are connected via another gigabit switch. The front-end machine henry (AMD
Athlon 64 3500+, 3GB RAM, CentOS 5.4) has two gigabit network interfaces, each one
connected to one of the switches. All machines share an NFS (Network File System)
storage mounted in the front-end to store the VM images.

Figure 2. Cluster testbed setup

2.3. Response time measurement

The response time considered in this work is related to the server side. Thus, the response
time is defined by the difference between the time a response is generated and the moment
the server has accepted the associated request. To obtain the response time for the web ap-
plications we have implemented a new Apache module that collects the time information
between these two moments using pre-defined hooks provided by the Apache Module API
[Kew 2007]. The hooks used to measure the response time are: post read request
and log transaction. The post read request phase allows our module to store
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the moment a request was accepted by Apache and the log transaction phase al-
lows it to store the moment a response was sent back to the client. The difference between
these values gives the response time.

To smooth out high short-term fluctuations in measurements readings, we have
integrated a filter procedure in our Apache module based on a single exponential mov-
ing average [Engineeting Statistics Handbook 2010]. Specifically, the filter computes the
next value, St, by summing the product of the smoothing constant α (0 < α < 1)
with the new value (Xt), and the product of (1 − α) times the previous average, as fol-
lows: St = α ∗ Xt + (1 − α) ∗ St−1. Values of α close to 1.0 have less smoothing
effect and give greater weight to recent changes in the data, while values of α close to
0.0 have a greater smoothing effect and are less responsive to recent changes. Some
techniques may be used to optimize the value of α, such as using the Marquardt pro-
cedure to find the value of α that minimizes the mean of the squared errors (MSE)
[Engineeting Statistics Handbook 2010]. In the filter module, we have used α = 0.5
as the default smoothing factor; based on our experiments this value was found suitable.

2.4. Xen hypervisor

In a Xen system, the virtual machines are termed domains. The Domain0 or Dom0 is the
first domain launched when the system is booted. It can be used to create and configure
all other regular guest domains. A regular guest domain is called a DomU or unprivileged
domain. Dom0 is scheduled like DomUs. If a domain has only one VCPU, it can be
executed in one processor or core at a time. Each domain may have one or more virtual
CPUs (VCPUs) which run on physical CPUs. In our experiments, each VM has four
VCPUs since we use a quad-core architecture. Xen has another feature called “cap” that
can be used to control the maximum percentage of CPU a domain can use, even if there
are free CPU cycles. This may be useful if one wants to control how the Xen schedules
the domains to the physical CPUs.

The Xen hypervisor offers two kinds of migration: cold and live migration. The
difference between them is that on cold migration the VM stops running during migra-
tion. Otherwise, on live migration the VM keeps running most of the time; actually, it
stops only for a few milliseconds at Stage 3. The live migration stages are listed below
[Clark et al. 2005]:

• Stage 0 (Pre-Migration): Alternate physical host may be preselected for migra-
tion. Block devices mirrored and free resources maintained;
• Stage 1 (Reservation): Initialize a container on the target host;
• Stage 2 (Iterative Pre-copy): Enable shadow paging. Copy dirty pages in succes-

sive rounds;
• Stage 3 (Stop and copy): Suspend VM on source host. Generate ARP to redirect

traffic to target host. Synchronize all remaining VM state to target host;
• Stage 4 (Commitment): VM state on target host is released;
• Stage 5 (Activation): VM starts on target host. Connects to local devices. Resumes

normal operation.

Notice that cold migration does not have the Stage 2 as in live migration. No-
tice also that caches in hardware are not migrated [Verma et al. 2008], which can lead to
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cache misses in the target machine and impact application’s performance when perform-
ing migrations. As pointed out by [Voorsluys et al. 2009], both migration activities need
extra CPU cycles for the pre-copying process which are consumed on both source and
destination servers. Moreover, an additional amount of network bandwidth is consumed
as well, which may affect the quality-of-service in the cluster. A third available option
is VM replication, which means creating a new VM (application instance) from a stored
image, instead of migrating an already running one (see Section 3). It is worth mention-
ing that our optimization model includes the possibility of running replicated servers for
fulfilling the resources required by an application at a given operational stage.

3. Experiments
We performed a set of experiments in our testbed (described in Section 2.2). In the first
step, we used the Apache Benchmark (ab) [The Apache Software Foundation 2010] to
measure the maximum number of requests per second that our physical machines can
handle. We found that our worker machines (maxwell and edison) achieved a maxi-
mum of 1145 requests/sec for a typical PHP script web request with an average processing
time of 6 milliseconds.

As shown in Figure 3, when the CPU utilization of an application is low, the
average response time is also low. This is expected since no time is spent queuing due
to the presence of other requests. On the other hand, when the utilization is high, the
response time goes up abruptly as the CPU utilization gets close to 400% (the maximum
value for utilization is 400% because we are using quad-core machines and each core
represents 100%). In order to meet fair response time requirements, we shall perform
VM migration or replication before the machine saturates, dimensioned for playing safe
as 300% of CPU utilization. This leaves an amount of 100% CPU capacity available to be
used by the VM management domain (Dom0) on the physical servers during the migration
or replication activities.
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Figure 3. Relationship among throughput, response time, and CPU utilization

In the next step, we allocate two virtual machines (VMs) to run on the maxwell
machine. Each VM has 256 MB of RAM, running an Apache 2.2 over Debian 4.0. Since
our applications are CPU-bound, this memory capacity was found suitable for our exper-
iments. Notice that the quantity of memory a VM is using may impact on how much time
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is needed to complete a migration [Hermenier et al. 2009]. We plan to evaluate this issue
in future experiments.

The first VM runs the application App1 and it uses 120% of the total CPU re-
sources (considering a quad-core machine). The second VM, which runs the application
App2, starts using 40% of the CPU resources. Then, we consider increasing the App2
workload demand until both VMs for App1 and App2 (along with Dom0) are using 300%
of the physical CPU resources. After such a condition occurs we perform the actions de-
scribed in the following experimental scenarios in order to maintain quality-of-service
requirements. We ran experiments with three different scenarios: (a) cold migration, (b)
live migration, and (c) replication. Each of the experiments showed similar results for
repeated executions.

3.1. Scenario 1: Cold migration
In this scenario, the cold migration mechanism is applied to move the App2 VM to a
physical machine with spare capacity (that is, from maxwell machine to edison ma-
chine). As expected, we observe that in the cold migration, the VM stops during the
migration. Figure 4 shows the throughput, response time and CPU utilization for both
VMs during the course of the experiment. The experiments have approximately 10 min-
utes in duration.

We show that this kind of migration cannot be used in a soft real-time system
because the VM being migrated stops during the course of migration. This is explicitly
shown at the throughput curve of the application App2, which was migrated and then
stopped for approximately 10 seconds. During the course of this kind of migration, the
slowdown in the service was 100% because the execution of App2 had been completely
suspended and both response time and throughput measurements dropped to zero. In all
scenarios, the drop in the throughput shows the instant in which the VM movement was
performed. After the migration phase, the response time varied considerably reaching up
to 8 seconds.
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Figure 4. Execution of the cold migration scenario: App1 (left) and App2 (right)

3.2. Scenario 2: Live migration
In this scenario, we use live migration to move a VM to a new server machine without
service interruption [Clark et al. 2005]. Besides not stopping the service during migra-
tion, we still need to maintain an acceptable quality-of-service in terms of application’s
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response time. The goal of the experiment (shown in Figure 5) was to evaluate the impact
of applying the live migration mechanism.
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Figure 5. Execution of the live migration scenario: App1 (left) and App2 (right)

As would be expected, unlike cold migration, we observe that in live migration the
VM is not paused during the migration. In Figure 5, the application App2 was migrated
with no interruption to the service. However, we noticed that the response time for App2
increased substantially during the course of migration. For instance, the response time
measured for App2 raised from 11 milliseconds to 300 milliseconds on average for a
period of 3 seconds. The throughput measurement was also affected by the migration.
We also notice that even App1 was slightly affected when migration was performed. The
slowdown in the throughput was 61.5% (from 414.1 req/s to 159.5 req/s). We can note
that the disruptions observed when performing dynamic changes through live migration
last a short time and are basically unavoidable.

3.3. Scenario 3: Replication

We also have investigated an alternative approach using replication to help minimize these
disruptive impacts in the QoS of the applications. In this scenario, we consider creating
and deploying a new VM replica for the application App2 on the destination server. At the
moment the new replica is ready for processing the client requests, we start redirecting
the requests to this new replica. We may then either shutdown or keep running in the
origin physical server the old VM replica. The first option was adopted in the experiment.
The last option may be adopted to provide a high capacity server, summing the replicas
resources, to support an application with high resource demands.

The goal of the experiment for this scenario (see Figure 6) is to evaluate the re-
sponse time impact compared to the live migration scenario presented in Section 3.2.
Specifically, we have measured the response time (and throughput) during the replication
process to identify potential practical issues such as the time delay to boot a new VM and
the stabilization time of the load balancer when transferring requests to the new replica.

The use of replication shows improvements compared to the live migration, for
example, by analyzing the decrease observed in the throughput in Figure 6, contrasting it
to Figure 5. Specifically, the execution behavior of both applications App1 and App2was
found more stable when using replication in comparison to live migration. For example,
the response time observed for App2, which was replicated in another server machine,
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Figure 6. Execution of the replication scenario: App1 (left) and App2 (right)

increased from 10 milliseconds to 22 milliseconds. In addition, the throughput observed
had a very slightly drop from 473 req/s to 467 req/s. We can also emphasize that App1
was less affected when replication was performed instead of migration.

The basic steps for replication consists of (1) booting a new VM replica and (2)
redirecting the requests to the new replica. The time needed to boot a VM is in between
25 and 40 seconds, which may be a bit longer than 10 seconds, on average, observed
in the live migration in Scenario 2 (see Section 3.2). We argue that if the replication
scheme is able to take advantage of prediction techniques to anticipate the booting process
considering typical load patterns, such as proposed in [Dinda and O’Hallaron 2000], the
time delay for booting a new VM may be minimized. We may also boot the new replica
on the target machine a few seconds earlier to have it running and ready at the moment
necessary for using the replicated VM.

The phase of redirecting requests for the new replica raised an implementation
issue that needs to be addressed. We have observed that if all the current requests were
abruptly redirected to the new VM replica it would take a long time to get both throughput
and response time stable. The sticking point is that Apache has a single control process re-
sponsible for launching child processes (daemons) which listen for connections and serve
their requests when they arrive. To tackle this redirecting bottleneck, we used a config-
urable mechanism termed “spare servers” [The Apache Software Foundation 2010]; set-
ting the Apache configuration to maintain a suitable set of idle server daemons, which
standby ready to serve incoming requests. In this way, clients do not need to wait a long
time for a new child processes to be forked before their requests can be served. Moreover,
redirecting the requests at a slower rate we achieved further reduction of the server set-
tling time. In this experiment, we redirected 10% of the requests each time, until 100%
of the requests were redirected to the VM replica.

4. Related Work

A heuristic algorithm for server consolidation is available [Khanna et al. 2006], but it
does not take into account the cost of migrating virtual machines from one physical
machine to another. Another approach [Wang et al. 2008] presents a two-layer control
architecture aimed at providing power-efficient real-time guarantees for virtualized com-
puting environments. The work relies on a control theory based framework, but does
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not addresses live migration in a multiple server context. In [Kusic et al. 2009], a dy-
namic resource provisioning framework is developed based on lookahead control. A
power-aware migration framework for virtualized HPC (High-performance computing)
applications, which accounts for migration costs during virtual machine reconfigurations,
is presented in [Verma et al. 2008]. As in our approach, it relies on virtualization tech-
niques used for dynamic consolidation, although the application domains are different.
In [Voorsluys et al. 2009], the authors quantify the effect of VM live migrations in the
performance of social networking websites. The overall objective of their experiments is
to quantify slowdown and downtime experienced by the application when VM migrations
are performed in the middle of a run.

5. Conclusion and future work
We have presented a virtualized server environment targeted for dynamic deployment
and allocation of VMs to physical machines. Our goal was to carry out experiments to
evaluate the performance impact in terms of response time and throughput of applications
during the course of VM migration and replication.

The replication steps involved starting a VM replica in the target host and redi-
recting requests to the new VM replica. Our results showed that by using replication
we can minimize some performance disruption incurred during migration. Finally, the
evaluation described in this work will help us to implement our dynamic optimization
model and strategy for power and performance management of virtualized web clusters
[Petrucci et al. 2010].

As for future work, we plan to develop additional experiments with state-aware
applications considering another layer as database. To address this, we intend to use
Rubis [RUBiS 2010] multi-tier benchmark. In the replication process, the VM in the
source server was turned off. We would like to investigate if it would be valuable while
maintaining this application on the source server too for load balancing proposes. And,
if so, we would like to identify what part of the application workload would be allocated
both in the source and target physical machines.
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