
smartenum: A Branch-and-Bound Algorithm for Optimum
Frequency Set Establishment in Real-Time DVFS

E. B. Valentin1, R. S. Barreto1

1Department of Computer Science
Federal University of Amazonas

Manaus-AM, Brazil

{ebv,rbarreto}@dcc.ufam.edu.br

Abstract. This paper describes an offline branch-and-bound algorithm to es-
tablish the optimum frequency set to execute real-time tasks taking into ac-
count worst-case scenarios on the DVFS technique. The real-time tasks are
scheduled by a dynamic fixed priority scheduler, such as Rate-Monotonic.
The task model also considers mutual exclusion relations adopting the Pri-
ority Ceiling Protocol. The schedulability analysis is carried out by response
time technique, which had to be adjusted to consider several frequencies.
Two case studies are detailed. Results have shown a reduction of 91% and
78% in the number of evaluated configurations. In addition, experimental
results pointed out energy reductions of 38.79%, and 30.46%.

1. Introduction
Modern processors design provides the possibility to change operating frequency dy-
namically at runtime. Therefore, clock speed and corresponding voltage may be dy-
namically controlled to the lowest available level while meeting task’s timing con-
straints. This is the key idea behind a technique known as Dynamic Voltage and Fre-
quency Scaling - DVFS. When considering processor circuitry, there is a quadratic
relationship between energy consumption and voltage. This relation is described on
Equation (1):

E = Cl ×Ncycle × V 2
dd (1)

where E is energy, Cl is circuitry capacitance, Ncycle is number of cycles and Vdd is
the voltage [Gutnik 1996].

In some situations, you can lower the supply voltage in such a way to take ad-
vantage from this quadratic relation between voltage and energy consumption. How-
ever, lowering the supply voltage also reduces linearly the clock speed. For instance,
consider a task with 25ms deadline executing in a 50MHz processor under 5V. If this
task requires 5×105 execution cycles, the processor finishes its execution within 10ms
and stays idle for the remaining 15ms. However, if user scales processor speed and
voltage down to 20MHz and 2V, the processor finishes this task exactly at its deadline,
25ms, resulting in a 84% energy consumption reduction [Shin et al. 2001].

12th Brazilian Workshop on Real-Time and Embedded Systems 27



Although this technique can yield meaningful energy consumption reduction,
its usage requires care, especially when timing constraints are considered. This prob-
lem may be trivial if each task is taken into account isolated without any concern of
other tasks interference. Once it is known the task’s deadline and the required worst-
case execution cycles, the best execution frequency can be selected in order to achieve
lowest energy consumption and still reach the deadline. On the other hand, when a sys-
tem with more than one task is considered, this problem becomes more complicated.

An interesting problem arises when executing such systems in DVFS-enabled
processors: “In which frequency each task must be executed, so that the whole sys-
tem reaches minimum energy consumption from processor circuitry and all tasks meet
their deadlines?” In this case, for each frequency combination, a new schedulability
analysis is required, because a single change into one task execution time will reflect
the whole system, because interference between every tasks will suffer modification.
If the system has N real-time tasks and the processor has Γ possible frequencies, then
there are ΓN possible frequency combinations.

The proposed method is an offline branch-and-bound algorithm to establish
the optimum frequency set to execute real-time tasks taking into account worst-case
scenarios on the DVFS technique. This is the main contribution of this paper. So
far, the algorithm only considers pruning unschedulable nodes. Real-time tasks are
scheduled by a dynamic fixed priority scheduler, such as Rate-Monotonic or Deadline-
Monotonic. The task model also considers mutual exclusion relations adopting the
priority ceiling protocol (PCP). Thus, each task can be interfered by factors like high
priority tasks and shared resources being held by low priority tasks. A schedulability
analysis is performed in order to check if these interferences can lead the system to an
undesirable state in which a real-time task would miss its deadline.

This work is part of a larger project that aims to propose a framework to help
designers to develop embedded multimedia applications with low energy consumption
for wireless portable devices. Although this work considers worst-case execution sce-
narios, it is worth mentioning that this is only the starting point since there is ongoing
projects that takes into account the actual execution scenarios that exploits slack time.

This text is structured as follows: related works are reviewed in Section 2, the
problem is modeled in Section 3, the proposed algorithm is presented in Section 4,
experimental results are then analyzed in Section 6 and conclusions and future works
are discussed in Section 7.

2. Related Works

Problems related to energy consumption have been solved by using several known
techniques. Havinga [Havinga 1997] has produced a survey about most of them. Dy-
namic voltage and frequency scaling, idle and sleep operating modes, dynamic power
management (DPM), clock regions, co-processors for specific application type, and
operating system tuning are some of discussed techniques. It is worth mentioning that

28 Proceedings



while implementing those techniques, usually, application’s timing constraints are not
taken into account.

Zhao and Aydin [Zhao and Aydin 2009] proposed a combined approach be-
tween DVFS and DPM techniques to reduce energy consumption on real-time sys-
tems. Although a worthy work, they propose deal with only one task leading to
a non-preemptive solution. An important contribution in the power-aware schedul-
ing of real-time tasks was done by [Mejia-alvarez et al. 2004]. They propose a so-
lution based on knapsack problem considering system utilization factor. Nevine in
[AbouGhazaleh et al. 2003] proposes a colaborative solution which involves sched-
uler and compiler utilizing intra-task DVFS. However, both works do not take shared
resource into account. Choi in [Choi and Pedram 2005] presents an intra-process ap-
proach to making use of runtime information about the external memory access statis-
tics in order to perform CPU voltage and frequency scaling with the goal of minimizing
the energy consumption. But in this case, it does not consider real-time tasks. An inter-
task DVFS approach is done by Yao in [Yao et al. 1995]. This work is based on time
slices. It is proposed a mechanism to determine the optimum execution frequency for
N tasks in each time slice. It is also proposed a modification on the Earliest Dead-
line First (EDF) algorithm in order to cover the proposed method. Another strategy
to explore DVFS usage is to insert frequency scaling instructions in specific points
of tasks code. Azevedo in [Azevedo et al. 2002] proposes an intra-task DVFS based
to determine these points and which frequencies are required. The points are chosen
based on code profiling and simulations. Its simulation results have shown an energy
reduction of about 60%. However, the code profiling is hard to produce and usually
application dependent. Shin in [Shin et al. 2001] presents an intra-task DVFS solution
based on static analysis. Task code is evaluated and analyzed in order to produce a
control flow graph. Each node represents a basic block and contains information about
the number of work case execution cycles. This graph is then utilized to determine
which points in the code are eligible to change frequency, based on the number of not
executed cycles. That solution does not consider preemption in the system. Pillai and
Shin [Pillai and Shin 2001] present a class of novel algorithms called real-time DVS
(RT-DVS) that modify the OS’s real-time scheduler and task management service to
provide significant energy savings while maintaining real-time deadline guarantees.
Shared resources are not considered in that work.

3. Problem Definition and Modeling
Consider a processor P with DVFS feature available for Γ frequencies. The set of all
possible frequencies in P is F = {fi | fi is an available frequency in Hz for P and
1 ≤ i ≤ Γ}. Consider also a modelM with N tasks. InM, the system is executed
under a dynamic fixed priority scheduling.

Consider now the set β consisting of N -tuples. Let K ∈ β, K =
〈k1, k2, . . . , kN〉, where ki ∈ F . K represents a possible configuration of frequen-
cies assignment to Ti tasks inM, where Ti is executed with frequency ki. Each ele-

12th Brazilian Workshop on Real-Time and Embedded Systems 29



ment K ∈ β must be interpreted as an arrangement of the possible assignments that
can be created using all available frequencies in P . Thus, elements in β are possible
configurations for execution ofM. There are ΓN possible configurations K’s in β.

Due to shared resource there is the need to consider mutual exclusion relations
in tasks ofM . Ti ∈M has the following properties: Di is its deadline; Pi is its period
of execution; WCECi is its worst-case execution cycles; Ci(f) is Ti’s execution time
which is function of frequency f . Ci(f) = WCECi

f
; pi is Ti’s priority; Ji is the release

jitter for task Ti, which indicates the worst release case for Ti; Ii(K) is the interference
suffered by Ti, which is function of frequency setK. Ii(K) corresponds a time window
in which there is continuous execution of tasks with greater or equal priorities to Ti’s;
Ri(K) is Ti’s response time as function of frequency set K. Ri(K) = Ii(K) + Ji.
Ii(K) is result of a schedulability test. The schedulability test is based on response
time. It can be calculated using Equation (2).

In+1
i (K) = Ci(ki) +Bi +

∑
j∈hp(i)

{⌈
In
i (K) + Jj

Pj

⌉
× [Cj(kj) + σ]

}
(2)

In Eq.(2), hp(i) is the set of tasks which has higher priorities than Ti.
In
i (K)+Jj

Pj

represents the number of occurences of Tj over Ii. σ is the overhead caused by the
frequency and voltage switch process. Bi represents the time spent in shared resources
locks. In order to deal with priority inversion problem, Bi is calculated considering
the Priority Ceiling Protocol (PCP) [Sha et al. 1990]. Sha et al. [Sha et al. 1990] does
not treat with different available frequencies. It is worth noting that Eq.(2) has been
rewritten considering the selected frequency for execution of each task Ti. From this
definition, it is noticeable the relevance of properly selecting a frequency to a task.
Because selecting an ordinary frequency f to a specific task Ti, it will distinguish Ti’s
execution time Ci(ki) and consequently its response time Ri(K). In this sense, a task
is always completelly defined as function of its selected frequency. Another property
derived from the frequency choice is the task idle time. Ti’s idle time is Di − Ci(K).
When the target is to maximize processor utilization time, the selected frequency is
considered optimum when Ti’s idle time is the minimum. However, there is an intrinsic
condition on this problem, because all tasks must meet their timing constraints, in this
case Di. Hence,

∀ i < N, Ri(K) ≤ Di (3)

Elements in β must be evaluated by means of response time schedulability test.
In this case, K ∈ β is considered a feasible configuration if, and only if, it does not
violate the condition (3). The problem consists in finding the element K in β which
leads the system to a configuration where constraints (3) are satisfied and the lowest
possible consumption in P is achieved.

30 Proceedings



The objective is then to determine M ∈ β so that:

Minimize{idle(M) =
N∑

i=1

(Di − Ci(ki))} (4)

in such a way that, usingM ,Ri(M) respects condition (3). idle(M) is referred
in this paper as idle time of frequency configuration M . Thus, idle(M) represents the
maximum utilization of idle times in each task.

4. Branch-and-Bound Algorithm to Establish Optimum Frequency Set

Figure 1. smartenum Al-
gorithm Diagram

The proposed algorithm, here called smartenum,
generates a search tree for all possible arrange-
ments of tasks inM and frequencies in F . The
idea behind constructing the search tree is to put
each task in a specific level of the search tree
and, associated with this task, to determine its
best frequency. This way, the search tree will
be limited up to N levels. In the proposed algo-
rithm the search tree is traversed using a depth
first search method. The stop condition is the
impossibility of satisfying condition (3). The al-
gorithm performs two initial prunings, throwing
away frequencies that alone produces computa-
tion time which violates (3) and establishing a
starting point for the search. These prunings cor-
respond to a upper local limit and a lower limit
for the combinatorial space. Figure 1 shows its
diagram.

The proposed algorithm in Figure 1 has
two operation types: enumeration and pruning.
Enumeration operation consists of listing and
evaluating elements K ∈ β. The evaluation
is the schedulability test in order to check con-
straint (3) for that configuration K. Pruning op-
eration consists of eliminating elements in order to reduce the number of elements to
verify during the enumeration operation.

All available frequencies are evaluated for each task in a decreasing order, so
that the greater computation times are considered only as a last resource. This premise
allows to throw away lower frequencies, in case an ordinary frequency has been found
as useless to one specific task. This evaluation method compounds the search tree
illustrated in Figure 2. Thus, all frequencies related to task Ti are at level i of search
tree. And every path starting from level 1 and ending at level N represents an element

12th Brazilian Workshop on Real-Time and Embedded Systems 31



K ∈ β. It is worth emphasizing that, even though this algorithm uses the idea of search
tree, it is not required to instantiate all elements in memory. It is possible to generate
every element K in an iterative fashion considering all frequencies in each level.

Figure 2. Search tree used by
smartenum

In Figure 2, f1 > f2 > . . . > fΓ

and Ci(f1) < Ci(f2) < . . . < Ci(fΓ).
While evaluating frequencies in a decreas-
ing order, it is possible to perform steps (I)
and (II) of initial pruning, from Figure 1.
The pruning step (I) comprises evaluation
of all frequencies in F for each task, in-
dividually. While evaluating a single task,
it is possible to take into account the local
constraint (5).

Ci(ki) ≤ Di (5)

If an ordinary K has a ki which violates the local condition (5), hence K also
violates the restriction (3). The pruning in step (I) corresponds to perform this local
analysis and to eliminate K’s which do not respect the condition (5). This means to
establish an upper local limit for each task. This limit determines what is the maximum
computation time each task can assume and also the lowest frequency that can be
applied on it, taking into account only properties from that task. It is worth mentioning
that this pruning does not throw away all K’s in β which violate (3). There are K’s
that meet local restriction (5) for all tasks but fail to satisfy (3) due to the existence
of interference between them. This pruning step does not perform any kind of direct
evaluation of the whole configuration.

The pruning step (II) corresponds to finding a starting point for the enumeration
operation. It aims to determine a lower limit I . This pruning procedure considers the
set β′ ⊆ β, where β′ = {Ki | Ki = 〈ki, ki, . . . , ki〉}. β′ is a set of configurations
where all tasks executes at same frequency. Elements in β′ hold the property (6).

idle(K) ≤ idle(K ′)⇔ ki ≤ k′i, Ki = 〈ki, ki, . . . , ki〉, K ′
i = 〈k′i, k′i, . . . , k′i〉 (6)

As the frequency ki of configuration K is lower than k′i of configuration K ′, then com-
putation times Ci(ki) of all tasks Ti in configuration K will be greater than equivalents
computation times Ci(k

′
i). As consequence, idle times in configuration K are lower

than in configuration K ′, thus idle(K) ≤ idle(K ′). Taking into account the property
from Equation (6), this pruning step performs a binary search in β′. Thus, the aim of
this pruning is to find I ∈ β′ which does not violate the condition (3) and produces the
lowest idle time of all configurations in β′. This pruning step evaluates configurations
in order to perform the search. The following algorithm’s steps consist of enumeration
itself. In the worst case, even if all pruning steps are applied, all elements K ∈ β are
evaluated. The stop condition (III) of this enumeration is while there exist elements

32 Proceedings



K ∈ β not evaluated. Step (IV) selects an element P for evaluation. It traverses the
tree present in Figure 2 from left to right and from bottom to up. Frequencies are as-
signed and fixed for each higher levels, while frequencies are decreasingly variated in
lower levels. At beginning of the search, the highest available frequency in each level
is fixed as starting point. Next P ’s elements are determined by decreasingly variating
only the frequency on last level of the tree, in this case level N . Once all frequen-
cies on level N are already evaluated, the algorithm returns it to the highest frequency
available and on levelN−1 it selects the next available frequency, in decreasing order.
This process is repeated for all N levels of the search tree. When all frequencies on
level 1 are evaluated, or all elements K ∈ β have been evaluated, this means that the
whole search tree has been transversed. This situation represents the stop condition of
this enumerative search.

In the enumeration process, each selected configuration P carries out the re-
sponse time test. This test is represented by (3), which corresponds to step (V).
If a selected configuration P is feasible, then the algorithm checks if it produces
the lowest configuration idle time so far. This is performed at step (VI), that is, if
idle(P ) < idle(M). If yes, P becomes the new configuration M with lowest idle
time. This part is in the step (VII).

There is the possibility to apply some prunings when a selected configuration
P violates condition (3). This pruning is performed on step (VIII) of the algorithm.
This pruning relies on the fact that on all levels the computation time is evaluated in an
increasing manner. So, having fixed frequencies at levels 1 to N − 1, if a frequency fi

on level N is considered to produce a not feasible configuration P , then, a frequency
fi+1 < fi will produce another configuration P ′, also not feasible. Thus, there is no
need to evaluate P ′. This pruning is performed in a similar way for all levels. This
pruning operation adopts the result from evaluation done by the enumeration operation
in order to execute prunings. The step (VIII) is the bound process on this algorithm.
Step (IX) is the end point in this algorithm. If it exists one, this step reports a feasible
configuration M that produces the lowest possible idle time.

5. Exemplification

This section details how to apply the proposed algorithm in a small case study. Let a
modelM with two tasks executed in a processor with four frequencies available and
sharing three resources. The available frequencies and voltages are listed in Table 1(a).
The part of the task model with percentage of resource usage are shown in Table 1(b).

Table 1. Case study for exemplification.
(a) Freq. and Voltages

i Frequency Voltage
1 600MHz 1.19V
2 466MHz 1.05V
3 333MHz 0.91V
4 80MHz 0.72V

(b) Task model
Resource usage

Task pi Cycles Di i ii iii
1 0 1500 30 0% 40% 40%
2 1 900 10 20% 20% 0%

12th Brazilian Workshop on Real-Time and Embedded Systems 33



Table 2. Complete enumeration
Can be pruned by

f1 f2 K# C1(s) C2(s) R1 R2 Schedulable? idle(K) (I) (II) (VIII)

600

600 01 2.50 1.50 3.80 5.00 YES 31.20 Y
466 02 2.50 1.93 3.89 5.43 YES 30.68 Y
333 03 2.50 2.70 4.04 6.20 YES 29.76 Y
80 04 2.50 11.25 5.75 ∅ NO ∅ Y Y

466

600 05 3.22 1.50 4.52 5.72 YES 29.76 Y
466 06 3.22 1.93 4.61 6.15 YES 29.24
333 07 3.22 2.70 4.76 6.92 YES 28.32 Y
80 08 3.22 11.25 6.47 ∅ NO ∅ Y Y

333

600 09 4.50 1.50 5.80 7.00 YES 27.19 Y
466 10 4.50 1.93 5.89 7.44 YES 26.67 Y
333 11 4.50 2.70 6.05 8.21 YES 25.75
80 12 4.50 11.25 7.75 ∅ NO ∅ Y

80

600 13 18.75 1.50 20.05 ∅ NO ∅
466 14 18.75 1.93 20.14 ∅ NO ∅ Y
333 15 18.75 2.70 20.29 ∅ NO ∅ Y
80 16 18.75 11.25 22.00 ∅ NO ∅ Y Y

Initially, consider the complete enumeration of all possible configurations
K ∈ β for this example. In this case, there are 42 possible configurations for this
model. All these 16 configurations are listed in Table 2. If pruning step (I) is ap-
plied, frequency 80MHz is discarded for task T2, as its computational time would
be C2(80) = 11.25 and D2 = 10, then C2(80) > D2. Hence, K’s 04, 08, 12 and
16 are not evaluated if pruning step (I) is used. If pruning step (II) is executed, first
β′ = {01, 06, 11, 16} is taken into consideration. Configuration 11 is the one in β′

which is schedulable and provides the minimum idle time. So, 11 would be taken as
the start point to evaluate remaining configurations in β. If pruning step (VIII) is con-
sidered during the enumeration of this task model, configurations 14, 15 and 16 would
be not evaluated. At the point the enumeration reaches configuration 12, it will dis-
cover that 12 is not schedulable, and then, it will prune configurations 14, 15 and 16,
because lowering frequency for task T2 in this case will not give any other schedulable
model. The resulting enumeration of β, if all pruning steps are used, contains only
configurations 06, 11 and 13. For this task model, configuration 11 is the one which is
schedulable and provides the minimum idle time. Configuration 01, which is the con-
figuration with maximum frequency and voltage, would consume about 3398.64×Cl,
accordingly with Equation 1, considering Cl (circuitry capacitance) as a constant over
time. Configuration 11, on the other hand, would consume about 1987.44×Cl. There-
fore, the optimum frequency set determined by the algorithm reduces about 41.52% of
energy consumption, if compared to configuration 01.

6. Experimental Results

Table 3. Execution
types

Type Execution of
- No type of prunings.
A Step (I).
B Step (II).
C Step (VIII).

A+B Steps (I) and (II).
A+C Steps (I) and (VIII).
B+C Steps (II) and (VIII).

A+B+C Steps (I), (II) and (VIII).

This is a branch-and-bound algorithm. Therefore, in
the worst-case, even though all pruning steps are ap-
plied, all possible configurations K ∈ β will be enu-
merated. The proposed algorithm performance eval-
uation is based on the number of enumerated config-
urations and on the time spent.

All possible combination of pruning opera-
tions has been evaluated. In this case, there are eight

34 Proceedings



types of execution that are listed on Table 3.

For simplification purposes, the frequency and voltage switching overhead, σ
from Equation 2, is considered to be zero in these experiments.

6.1. Case Study I

In this case study, there are six tasks in this model, they are executed in a system with
four frequencies available and they share two resources. The set of available frequen-
cies and voltages is listed in Table 4(a). The part of the task model with percentage of
resource usage are shown in Table 4(b). The computational time spent during execu-
tion for each pruning combination is illustrated in Figure 3(a). The maximum time was
18 ms (no pruning) and the minimum time was 2 ms (pruning A+B+C). The number of
evaluated configurations done during the enumeration for each pruning combination is
illustrated in Figure 3(b).

Table 4. Case study I.
(a) Freq. and Volt-
ages.

i Frequency Voltage
1 440MHz 1.6V
2 120MHz 1.2V
3 60MHz 1.0V
4 30MHz 0.9V

(b) Task model.
Resource usage

Task Cycles Di i ii
1 2400 200 25% 0%
2 1200 50 13% 0%
3 1200 150 0% 30%
4 900 100 50% 0%
5 600 100 20% 0%
6 600 100 20% 10%

Results show that type A did not produce any pruning. Whilst types B and C
have produced a considerable amount of prunings. This can be seen in the computation

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

- A B C A+B
A+C

B+C
A+B+C

Ti
m

e
(s

)

Applied prunings

Computation time

(a) Computation time

0
500

1000
1500
2000
2500
3000
3500
4000
4500

- A B C A+B
A+C

B+C
A+B+C

C
on

fig
ur

at
io

ns

Applied prunings

Evaluation by number of configurations

Total of configurations
Evaluated configurations

Feasible configurations

(b) Number of evaluated configurations

Figure 3. Results for case study I.

time of Figure 3(a) and in the number of evaluated configurations of Figure 3(b), where
type C has produced the lowest amount of time for execution and the lowest number
of evaluated configurations. As presented in Figure 3(b), in order to determine the
optimum frequency set, it was required to evaluate 361 of 4096 configurations, which

12th Brazilian Workshop on Real-Time and Embedded Systems 35



represents a reduction of 91.2% in the number of evaluated configurations. Consid-
ering the system executing under highest operating frequency, 440MHz under 1.6V ,
from Equation (1), this model would consume 17664.00× Cl. For this case study, the
optimum frequency set is β = {60MHz, 440MHz, 30MHz, 120MHz, 440MHz,
440MHz}. Therefore, if the model uses the optimum configuration, it would consume
10812.00× Cl, which represents a 38.79% of energy consumption reduction.

6.2. Case Study II

In this case study, there are twelve tasks in this model, they are executed in a system
with four frequencies available and they share two resources. The set of available fre-
quencies and voltages is listed in Table 5(a). The part of the task model with percentage
of resource usage are shown in Table 5(b).

Table 5. Case study II.
(a) Freq. and Voltages.

i Frequency Voltage
1 300MHz 1.5V
2 250MHz 1.38V
3 220MHz 1.32V
4 150MHz 0.90V

(b) Task model.
Resource usage

Task Cycles Di i ii
1 180 10 13.4% 0%
2 180 20 44% 10%
3 180 30 0% 70%
4 180 30 0% 12%
5 180 30 12% 15%
6 180 30 0% 0%
7 180 30 13% 45%
8 120 10 3% 14%
9 120 20 4% 1%

10 120 30 0% 0%
11 120 30 0% 0%
12 100 10 0% 0%

The computational time spent during execution for each pruning combination
of the proposed algorithm is illustrated in Figure 4(a). The maximum time was 210
s (no pruning) and the minimum time was 46 s (pruning A+B+C). The number of
evaluated configurations done during the enumeration for each pruning combination is
illustrated in Figure 4(b).

0.00

50.00

100.00

150.00

200.00

- A B C A+B
A+C

B+C
A+B+C

Ti
m

e
(s

)

Applied prunings

Computation time

(a) Computation time

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000

- A B C A+B
A+C

B+C
A+B+C

C
on

fig
ur

at
io

ns

Applied prunings

Evaluation by number of configurations

Total of configurations
Evaluated configurations

Feasible configurations

(b) Number of evaluated configurations

Figure 4. Results for case study II.

36 Proceedings



Results show that type B has produced best enumeration reduction. Type
A has not produced any pruning. Reduction produced by type B has also ap-
peared combined with other type of pruning. As presented in Figure 4(b), in or-
der to determine the optimum frequency set, it was required to evaluate 3,662,613
of 16,777,216 configurations, which represents a reduction of 78, 16% in the num-
ber of evaluated configurations. Considering the system executing under high-
est operating frequency, 300MHz under 1.5V , from Equation (1), this model
would consume 4140.00 × Cl. In this case study, the optimum frequency set is
β = {150MHz, 150MHz, 150MHz, 150MHz, 220MHz, 250MHz, 250MHz,
300MHz, 300MHz, 300MHz, 300MHz, 300MHz}. Therefore, if the model uses
the optimum configuration, it would consume 2887.42 × Cl, which represent 30.26%
in energy consumption reduction. This reduction is considerable and it would require
only about tens of seconds during system design time in order to determine the opti-
mum frequency set, as presented in Figure 4(a).

7. Conclusions and Future Works
This paper has shown a branch-and-bound algorithm to establish a set of optimum
frequencies to be assigned to a real-time task model executed into a system with DVFS-
enabled processor. The set of optimum frequencies is the one which produces lowest
energy consumption and meets timing constraints from task model in such a way that
provides the maximum utilization of idle times in each task. This work showed the
response time schedulability analysis considering the specific frequency set.

The algorithm considers each frequency assignment combination as a config-
uration of a new model. A schedulability test is adopted in order to check each con-
figuration feasibility. The algorithm itself consists of an enumerative search. Thus, in
worst case it may reach unacceptable computation time. However, as presented in Sec-
tion 6, the proposed pruning steps of this algorithm reduces considerably the amount
of evaluated configurations and, therefore, the time spent for executing the algorithm.
In the experiments, the number of evaluated configurations has been reduced to only
9% and 22% of total possible configurations, which is very a good result. Another im-
portant result is the amount of energy reduction when compared with executing tasks
at high processor frequency. Our experimental results show that the proposed method
may obtain energy reductions of 38.79%, and 30.46%.

For further research we intend: (i) to consider the energy needed to run a frac-
tion of the tasks. If such amount of energy is already exceeding that needed to run a
complete solution on a different branch, then the partial solution and its descendants
can generally be pruned; (ii) to change the dynamic processor energy model to also in-
clude leakage current, memory access cost, I/O cost, and other energy overheads; and
(iii) to develop a heuristic to produce a feasible configuration, maybe not optimum,
but in a polynomial (non-exponential) computational time. (iv) to combine dynamic
power management technique in our scheduling approach in order to reduce energy
consumption by putting devices into sleep modes to optimize remaining idle time.

12th Brazilian Workshop on Real-Time and Embedded Systems 37



Acknowledgements
The authors would like to thank the partial financial support received from the Brazil-
ian Council for Scientific and Technological Development (CNPq) through projects
554071/2006-1 and 575696/2008-7. And also for the partial financial support from the
Nokia Corporation.

References
AbouGhazaleh, N., Mossé, D., Childers, B., Melhem, R., and Craven, M. (2003).

Collaborative operating system and compiler power management for real-time ap-
plications. In IEEE Real-Time Embedded Technology Applications Symposium.

Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum, A., and Nicolau,
A. (2002). Profile-based dynamic voltage scheduling using program checkpoints in
the COPPER framework. In Design, Automation and Test in Europe Conference.

Choi, R. and Pedram, M. (2005). Fine-grained dynamic voltage and frequency scaling
for precise energy and performance trade-off based on the ratio of off-chip access
to onchip computation times. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

Gutnik, V. (1996). Variable supply voltage for low power dsp. Master’s thesis, Mas-
sachusetts Institute of Technology.

Havinga, S. (1997). A survey of energy saving techniques for mobile computers.
Internal Report, University of Twente.

Mejia-alvarez, P., Levner, E., and Mossé, D. (2004). Adaptive scheduling server for
power-aware real-time tasks. ACM Transactions on Embedded Computing Systems,
3(2):284–306.

Pillai, P. and Shin, K. G. (2001). Real-time dynamic voltage scaling for low-power
embedded operating systems. pages 89–102.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. on Computers, 39:1175–1185.

Shin, D., Lee, S., and Kim, J. (2001). Intra-task voltage scheduling for low-energy
hard real-time applications. In IEEE Design & Test of Computers.

Yao, F., Demers, A., and Shenker, S. (1995). A scheduling model for reduced cpu
energy. In IEEE Symposium on Foundations of Computer Science (FOCS’95).

Zhao, B. and Aydin, H. (2009). Minimizing expected energy consumption through
optimal integration of dvs and dpm. In International Conference on Computer-
Aided Design (ICCAD’09), pages 449–456, New York, NY, USA. ACM.

38 Proceedings




