
Development Process for Critical Embedded Systems

L.B. Becker1, J.-M. Farines1, J.-P. Bodeveix2, M. Filali2, F. Vernadat3

1Dept of Automation and Systems – Universidade Federal de Santa Catarina (UFSC)
Caixa Postal 476 – 88040–900 – Florianopolis – SC – Brazil

2IRIT-CNRS, Université de Toulouse
Toulouse, France

3LAAS-CNRS, Université de Toulouse
Toulouse, France

{lbecker,farines}@das.ufsc.br, {bodeveix,filali}@irit.fr, francois@laas.fr

Abstract: Designing safety critical systems is a complex task due to the need of
guaranteeing that the resulting model can cope with all the functional and non-functional
requirements of the system. Obtaining such guarantees is only possible with the use of
model verification techniques. This paper presents an approach aimed to fulfill the needs
of critical system design. The proposed approach is based on the Architecture Analysis
and Design Language (AADL), which is suitable to describe the system’s architecture. It
contains a sequence of model transformations that easies the verification of the designed
AADL model and so assures its correctness. It must be highlighted that this is not per-
formed in a single step, as it is possible to verify AADL models with different abstraction
levels, which allows successive refinements in a top-down approach. We use a case study
from an Autonomous Parking System to illustrate the proposed development process.

Keywords: safety-critical systems, design approach, model-verification

1. Introduction

Modern safety-critical systems are getting more and more complex and, at the same time,
have become indispensable nowadays. Almost every system that in the past was simply
mechanic (e.g. cars, trains, airplanes) is now equipped with an embedded computing
systems. Also, most of the times, such systems are safety-critical.

In order to handle such increasing complexity it is necessary to use a development
process based on System Engineering. These techniques should both facilitate the mod-
eling discipline and provide model-verification facilities. Model-verification is crucial
for safety-critical systems design because it allows guaranteeing that the designed model
respect the application requirements and constraints.

In this context, the Architecture Analysis & Design Language (AADL)
[Feiler et al. 2006] seems to be a suitable choice. AADL is a modeling language that
allows early analysis of a system’s architecture. It supports the modeling of both software
and hardware components in a hierarchical manner using a set of components connected
through ports. AADL defines properties that can be attached to modeling elements in or-
der to give an abstract specification of the dynamic architecture of the system. Real-time
constraints are attached to threads, ports, buses, and processors (e.g. dispatch protocol,
period, deadline, processing power, hardware-software mapping, etc). The AADL lan-

I Workshop de Sistemas Embarcados 151



guage can also be extended by defining new properties or by attaching specific languages
to some elements.

Although AADL precise semantics makes it suitable for model verification, how
to perform such a task is still an open question. For this reason, we present in this paper
a solution that overcomes this problem. Our approach consists in supporting model veri-
fication taking into account irregular behaviors and data. Another important feature from
our proposal is that it follows the Model Driven Engineering (MDE) principles, as design
is intended to remain in high-level abstraction levels and does not need to worry about the
low-level details from the performed model transformations.

We can say that the proposed process supports the safe design of the system’s
architecture, once the resulting system architecture goes through several verification steps
in order to assure its correctness. To reach this goal it is performed a sequence of model
transformations, maintaining the principles of MDE. It starts with an AADL model and
finishes with an automaton model that can be verified.

The rest of the paper is structured as follows: Section 2 discusses some related
works. Section 3 gives a brief introduction to the AADL language. Section 4 presents
the proposed development process and our autonomous parking case study. Section 5
presents the techniques and toolset used to verify temporal properties of AADL models.
Finally, section 6 draws the conclusions of this work.

2. Related Methodologies and Tool Support
Designing new generations of embedded real-time systems is so complex that became
mandatory to work with higher abstractions (namely computational models) previous to
implementation. The Model Driven Engineering (MDE) [Schmidt 2006] is, for instance,
an initiative to help developers to manage software development complexity using models
at the very beginning, and with different abstraction levels. The key aspect from this
technology is the design of models that are decoupled from their target platform. Among
the main benefits of the emerging MDE approach it should be highlighted its enhanced
possibilities for early model verification.

In fact, many recent tools have been proposed to support different kinds of veri-
fication. With respect to our concerns, timing verification tools have been an active area
of research over these last years. It is interesting to remark that although most of these
tools are based on existing theoretical models, e.g., timed automata, Petri nets, the limi-
tations (especially with respect to combinatorial explosion and scalability) of which are
well known, the effort has been undertaken to achieve them. In fact, it is hoped that
first, the abstraction and the structure brought by the model driven approach and second,
the adoption of a specific execution model will help to struggle against these limitations.
Along these lines, we can cite the Cheddar [Dissaux and Singhoff 2008] scheduling tool
which proposes dedicated analysis for the AADL execution model. Currently, it considers
mainly analytical models. Future versions should take into account more detailed behav-
ior descriptions [Franca et al. 2007]. The tools Uppaal Port [Håkansson et al. 2008] and
Pola[Berthomieu et al. 2007] are based on the traditional model checking approach. Up-
paal Port is based on timed automata and supports component based development. In
order to reduce the combinatorial explosion Uppaal Port adopts a synchronous like ex-
ecution model which restricts interleaving of the asynchronous approach. Moreover, it

152 Anais



proposes partial order techniques for reducing space explorations. The tool Pola is based
on timed Petri nets, and it proposes specific support for the AADL execution model.

3. A Brief Overview of AADL

AADL is an architecture design language standardized by the SAE. This language has
been created to be used in the development of real time and embedded systems. As a
successor of MetaH, AADL capitalizes more than 10 years of experiments. MetaH is a
language developed by Honeywell Labs and used in numerous experiments in avionics,
flight control, and robotic applications. AADL also benefits from the knowledge on ADLs
acquired at CMU during the development of several ADLs, like ACME and Wright.

AADL contains all the standard concepts of any ADL: components, connectors
used to describe the interface of components, and connections used to link components.
The set of AADL’s components can be divided in three partitions: the software compo-
nents (process, thread, thread group, subprogram, and data), the hardware components
(processor, bus, memory, device), and a system component. Components can commu-
nicate through ports, synchronous calls, and shared data. A process represents a virtual
address space, or a partition, this address space includes the program defined by its sub-
components. A process must contain at least one thread or thread group. A thread group
is a logical organization of threads in a process. A thread represents a sequential flow of
execution, it is the single AADL component that can be scheduled. A subprogram repre-
sents a piece of code that can be called by a thread or another program. A data models a
static variable used in the code, they can be shared by threads or processes.

A processor is an abstraction of the hardware and the software in charge of the
scheduling and the execution of threads. The memory represents any platform component
that stores data or binary code. The buses are communication channels used to connect
different hardware components. The devices represent interfaces between the system
described and its environment.

Systems allow composing software components with hardware components. The
interactions can be defined at a logical and a physical level. At a physical level, software
components are associated to hardware components, a thread to a processor, or a data to
a memory for example. The logical level is used to describe the communication between
hardware and software. At a logical level we can define communication connections
between processors or devices and software components.

AADL uses the notion of mode to determine a set of active components. This
mechanism allows describing dynamic architectures through a static set of components.
We consider here the behavior annex [Franca et al. 2007] attached to threads or devices,
which is used to specify an abstract behavior for these components, allowing to make data
dependent analysis.

4. The Proposed Development Process

This section presents our proposed development process for critical embedded systems.
It is possible to say that this process supports the safe design of the system’s architecture
using MDE’s principles. By safe design we mean that the resulting system architecture
goes through several verification steps in order to assure its correctness. To reach this

I Workshop de Sistemas Embarcados 153



goal it is performed a sequence of model transformations, which starts with an AADL
model and finishes with an automaton model that can be verified. This section skips the
details of the verification chain (which is covered in the next section) and concentrates in
the high-level steps of the proposed process, which are shown in Figure 1.

1. Requirements Definition

3. Environment Description

4A. Sw Architecture Modeling

6. Refine Real‐Time Properties

7. Timing Verification

5B. Architecture Simulation

4B. Hw Architecture Modeling

5. Sw/Hw Mapping

2. Functional Modeling + Simulation

Proposed
AADL process

Figure 1. Proposed Design Flow

We understand that, as in any system development, the initial step is the definition
of the functional and non-functional requirements of the system, resulting in a set of re-
quirements. Then it is followed by the design of a functional model for the system (e.g.
Lustre or Simulink model). The proposed process itself starts in step-3 with the design of
the AADL model, providing the specification of the external devices (environment) that
interact with the system. step-4 is split in two parts: (4A) software architecture model-
ing/verification and (4B) hardware architecture modeling. The overall result here should
be an AADL model with basic properties already verified and a hardware architecture
potentially capable to run the designed software model. In step-5 a mapping from the
modeled software components to the hardware model is performed. The result is a com-
plete AADL model. In step-6 it is suggested that the real-time properties of the AADL
model should be updated with the precise timing information coming from the simulation
of the software in the target platform, which is conducted in step-5B. The proposed de-
velopment process is concluded in step-7 with the final model verification, which uses as
input the AADL model updated with the precise timing information. After that, it should
be possible to make automatic code-generation of the application.

It is important to highlight that the design flow among the steps is not unidirec-
tional. Every time that a verification step fails the designer should either backtrack to
higher abstraction levels of the AADL model and its properties or change assumptions
made in earlier levels. For example, if there is an error in the timing verification (step-7),
then the designer should be able to judge if the problem is due to the result of step-4A

154 Anais



(proposed software architecture) or to the result of step-4B (target hardware architecture).

The reminder parts of the current section details the steps depicted in Figure 1. We
use an Autonomous Parking (AP) System case study to elucidate the work performed in
each step. Moreover, we concentrate the discussions on the software architecture model-
ing (step-4A). The target hardware architecture definition (step-4B), although very impor-
tant in the context of the proposed process, should be subject of additional investigation
and therefore is left out of this work.

4.1. Requirements Definition

The initial step in any development methodology is to define the requirements of the sys-
tem to be developed. This includes both functional requirements (FR) and non-functional
requirements (NFR). While the former depicts the main functionalities to be performed
by the system, the latter imposes restrictions to those functionalities.

Table 4.1 presents the list of requirements from the AP system, which has three
main functionalities: (FR1) start/stop the system using a GUI; (FR2) search for a parking
slot; and (FR3) park the car. NFRs are like properties that must be satisfied by the related
FR.

4.2. Functional Modeling and Simulation

In many applications, especially those related with control systems, it is required to first
design a functional model of the system and to simulate it before any design decision on
the system architecture is carried on. This is used either to provide a deeper understanding
of the system functionalities or to test/simulate control solutions in early development
stage. Tools like Scade/Lustre and Matlab/Simulink are often used for this propose.

4.3. Environment Description

The third step of the process consists of using AADL to describe the environment that
interacts with the system under development. So, the set of interactions of the system
with the external devices, such as sensors, actuators, user interface, etc.

For this reason we use here a high-level AADL diagram. Figure 2 presents the
diagram designed for the AP system, where it is possible to observe the main system in
the center (named ParkingCtrl) surrounded by the devices. An advantage of using
AADL for such purpose is that it allows detailing each message exchanged between the
system and the devices, including information like data type, arrival pattern, and time
constraints.

In this phase two different kinds of external devices can exist: reused devices and
new devices. While devices like sensors and actuators are normally reused from previous
applications, devices like User Interfaces (UI) are normally designed on demand for each
application. New devices can be subject of formal verification prior to its use in the model.
Therefore it is necessary to specify the device’s behavior. In the scope of this work it is
suggested to describe behavior using finite automatons.

To exemplify the verification of devices behavior in the AP system we selected the
UI device (UIController). A possible behavior of this device is depicted in Figure 3.
This state-transition diagram states that, independently of the status of the application, the

I Workshop de Sistemas Embarcados 155



FR1 - Start/stop the system using a GUI
Description: The system must be explicitly activated
by the driver to start operation
NFR1.1 - To start the system the speed must
Maximum speed be kept at ≤ 20Km/h
NFR1.2 - The system must inform the user
On operation while it is working
NFR1.3 - The system must inform the user
Finished as it is turned off
FR2 - Search for a parking slot (real-time operation)
Description: When activated, the system must start
searching a new park slot as the vehicle moves forward
NFR2.1 - The system must inform the user
Driver alert when a new parking slot is found
NFR2.2 - If the speed is too high (over 20km/h)
Safety than it is not possible to search a parking slot
FR3 - Parking (real-time operation)
Description: The driver must trigger the beginning
of the parking after a parking slot is found.
The system controls the speed and direction of the vehicle.
NFR3.1 - The system is allowed to start parking
Safety only if the current speed is zero
NFR3.2 - The system must be halted immediately
Emergency Stop if the driver moves the wheel
NFR3.3 - The system must alert the driver when
Finish allert the parking maneuver is finished

Table 1. Requirements set of the Autonomous Parking (AP) System

driver can always turn off the system (NFR1.3). This can be proof by the existence of the
user event Off! in every possible execution state of the system. Although very simple,
this is an example to show that it is possible to use verification already at this level.

4.4. Software Architecture Modeling

The software architecture modeling (step-4A) is probably the most important phase of the
proposed design process. This phase may have several steps of iterations, as designer may
create several AADL submodels, from more abstract to more detailed ones, and that all
these models should have its properties verified.

In the first iteration the designer must detail the AADL system process (e.g.
ParkingCtrl at Figure 2) into a set of subcomponents (either processes or threads).
As this detailing is completed, model verification is performed, as explained in the next
section. If the verification fails (many times due to the lack of information in the model
at the moment), a new refinement in each component should take action, starting new
iterations.

156 Anais



Figure 2. AP System Environment Description.

Following this approach, each component of the AADL model can derive into
several subcomponents. By definition, the successive refinements will only finish as the
model contains enough details to be proof correct or incorrect by the model verification.
Each detailed model (i.e. iteration) should, however, cope with the abstract behavior
defined for the higher level component.

4.4.1. Architecture Refinement

The architecture refinement process consists of successive model refinements and ver-
ification, as suggested in the design flow from Figure 4. It starts with identifying the
operation modes (1) and threads (2) of the system, being followed by the mapping of
functions to threads (3). Afterwards the designer can make the connections among the
threads (4) and associate an execution mode to each thread (5).

We suggest organizing the functionalities of the system using different operation
modes. This can be seen as a kind of temporal decomposition from the set of available
functions. Therefore it is necessary to identify how many different operation modes the
system should have. These modes can be used to guide the modeling of the distinct AADL
processes that will be used to decompose the system in sub-parts. In our case study,
the sub-functions of the first decomposition are more or less analogous to the operation
modes. Figure 5 shows the automaton in charge of representing the AP system behavior.

After the identifications of the system (sub)functions it is possible to decompose
the AADL model into different threads. This can be either the first level of decomposition
of the AADL-system or a refinement of an existing thread. Defining connections means
to establish the information exchange among the system subparts (threads). This also

I Workshop de Sistemas Embarcados 157



Figure 3. User interface behavior

2. Identify threads 

1. Identify modes

A2.2. Architecture Refinement

4. Add connections

3. Map functions to threads

5. Assign modes to threads

A1. Select System or Thread

yes

new
refinement?

Figure 4. Refined steps from Architecture Refinement

158 Anais



Manouver

Slot

Idle

abort!

finished!

turnOff!

parkingInProgress!abort!

turnOff!

turnOn!

Figure 5. Basic operation modes of the AP System.

requires the definition of the data types associates with each port that transfer data.

For the AP system case study, the first level of decomposition consists basically
in three threads, as shown in Figure 6. SystemManagement is used to start or halt the
AP system by means of the graphical interface (FR1), SlotSelection is responsible
to search for a parking slot (FR2), and finally ParkingManeuver is responsible to
perform the parking (FR3). Every thread corresponds a FR of the system.

Figure 6. AADL model of parking control system (in the first decomposition)

Finally it is required to define in which operation modes each thread will be active.
This represents a common modeling procedure to make the timing decomposition of the
system functionalities. In AADL this is performed directly in the code, i.e. there is no
graphical representation for this association. It must be highlighted, however, that it is

I Workshop de Sistemas Embarcados 159



possible to associate a thread with several operation modes.

4.4.2. Model Verification

It is a modeler decision whether he wants to perform further refinements or to verify the
behavior of the current model. In order to make the model verification it is necessary to
provide the abstract behavior of each thread that belongs to the AADL model. Afterwards
designer should define the set of properties of interest to be verified and perform the
verification process. Such process is detailed in the section 5.

4.5. Time-Related Levels

To verify the real-time properties of the model it is necessary to make the Soft-
ware/Hardware Mapping (step-5). After this step, every thread must be associated with a
specific processor. The hardware architecture must have at least one processor. Thereby,
in the Real-Time Properties Refinement (step-6), the designer can add additional timing
information in the AADL model to be further verified. Such information must be obtained
using, for example, model simulation on top of the target architecture. Thereby it is pos-
sible to obtain the worst case execution time (WCET) for each function of the system
prior to its implementation. The last step of the proposed process is in charge of making
the verification of the timing properties. Schedulability and response-time analysis are
exemples of possible properties to be verified.

5. Verification Process
It is possible to argue that our proposed verification process supports the safe design
of the system’s architecture using MDE’s principles. By safe design we mean that the
resulting system architecture goes through several verification steps in order to assure
its correctness. To reach this goal it is performed a sequence of model transformations,
which starts with an AADL-like model and finishes with an equivalent automaton model
that is suitable for verification.

The verification process we have been working on uses AADL models as input
and performs the model checking of LTL properties. Moreover, schedulability and buffer
overflow can also be analyzed, as well as user defined properties. This process is split in
the following phases (Figure 7):

• Use of the OSATE-TOPCASED [Team 2004, Topcased ] environment for AADL
model edition and XMI generation. We consider AADL together with its behav-
ioral annex.
• Translation of AADL XMI models to Fiacre [Berthomieu et al. 2008].
• Translation of Fiacre to the timed transition system (TTS) input format of Tina

toolbox.
• Translation to an untimed automaton via an LTL-preserving time abstraction.
• Verification of LTL properties using the Selt tool from the Tina toolbox.

5.1. Verification Tools

TINA is a software environment to edit and analyze Petri nets, Time Petri nets, Time
Transition Systems, and also extension of these nets handling data, priorities and temporal

160 Anais



AADL
model

Fiacre
model

TTS
model

Automaton
model

AADL2FIACRE

frac tina

LTL
property

diagnosticselt

Figure 7. The verification process.

preemption. Beside the usual editing and analysis facilities of similar environments, the
essential components of the toolbox are a state space abstraction tool (also called Tina)
and a model checking tool (selt). Detailed information about the toolbox capabilities can
be found in [Berthomieu et al. 2004].

TINA offers abstract state space constructions that preserve specific classes of
properties of the state spaces of nets, like absence of deadlocks, linear time temporal
properties, or bisimilarity. For untimed systems, abstract state spaces help to prevent
combinatorial explosion. For timed systems, TINA provides various abstractions based on
state classes, preserving reachability properties, linear properties or branching properties.

State space abstractions are provided in various formats suitable for existing model
checkers. The TINA toolbox also provides a native model checker, selt. Selt allows one to
check more specific properties than the general ones (boundedness, deadlocks, liveness)
already checked by the state space generation tool. Selt implements an extension of linear
time temporal logic known as State/Event LTL [Edmund et al. 2004], a logic supporting
both state and transition properties. The modeling framework consists of Kripke transition
systems (labeled Kripke structures, the state class graph in our case), which are directed
graphs in which states are labeled with atomic propositions and transitions are labeled
with actions.

State/Event-LTL formulas are interpreted over the computation paths of the
model. They may express a wide range of state and/or transition properties. A formula p,
q evaluates to true if it does so on all computation paths, constituted from the statements
X (in the next step), G (globally), and F (eventually). Follows some typical formulas:

p p holds at the start
X p p holds at the next step (next)
G p p holds all along the path (globally)
F p p holds in a future step (eventually)

p U q p holds until q holds (until) and q holds eventually.

Real-time properties, like those expressed in so called “timed temporal logics”, are
checked using the standard technique of observers, encoding such properties into reacha-
bility properties. The technique is applicable to a large class of real-time properties and

I Workshop de Sistemas Embarcados 161



can be used to analyze most of the “timeliness” requirements found in practice.

5.2. Properties Verification

Currently, we support the verification of three kinds of properties: (i) implicit proper-
ties taken into account by the translator and leading to deadlock when not satisfied; (ii)
user properties specified through AADL real-time observers; and (iii) properties specified
directly in linear temporal logic.

5.2.1. Implicit properties

For the moment, two implicit properties are taken into account by the translator:

• Schedulability: threads are scheduled using a fixed priority protocol with user-
specified preemption points. Deadline events are generated by the translator. If a
deadline occurs while a thread is still active, a specific deadlock is generated.
• Buffer overflows: AADL defines the property Overflow Handling Protocol

which specifies what to do in case of overflow. Either the oldest or the newest
data is lost, or the component is erroneous. The latest case is handled by the trans-
lator to generate a specific deadlock if the capacity of the input buffer is exceeded.

5.2.2. Real-time observers

Some properties such as bounded response time can be expressed using AADL threads
acting as real-time observers. The component to be checked is linked to an observer which
plays the role of its environment and checks its responses.

For example, properties of the maneuver component of the parking can be veri-
fied by specifying an environment as the following. It checks that the highSpeed signal
is emitted one period (fixed here at 10ms) after the speed becomes non zero. Otherwise,
the err state would be reached. It also checks that the abort signal is sent if the wheels
are moved. The selt model checker was used to show that the err state is unreachable.

5.2.3. Linear time Temporal Logic

Temporal properties can be checked on the closed system. They can be expressed in
linear temporal logic (LTL) and passed to the selt tool. Atomic properties are either
event properties or state properties. For example:

• If the speed is too high, the interface cannot get the found message while the
search has not been restarted.
• It is possible to park the car, i.e. there exists an execution path leading to a state

where the car is parked. It is expressed as a negated property: it is not true that in
any execution, finished is never sent.
• The car can be parked infinitely often.

162 Anais



5.2.4. Modal mu-calculus

There exists some useful properties that cannot be expressed neither in LTL, nor in CTL.
For example, the fact that the user interface can be reinitializable by the user whatever
the system does. To solve this problem, it can be expressed in modal mu-calculus. Such
a property can be verified on atemporal models by the muse tool of the Tina toolbox. It
must be associated with a stability property expressing that non-user events do not leave
the initial state.

6. Conclusions
In this paper we presented a verification approach and the related toolset to design safety
critical systems using the AADL language. This work is part of a more general project,
which also covers the hardware architecture definition in more details, going towards
producing safe models for critical applications. It must be highlighted that in the end of
the process it is possible to make automatic code generation from the AADL model for a
given platform.

It should be noticed, however, that given the complexity of the situation, the guar-
antee of the existence of a correct solution cannot be asserted. This also applies to the
implementation derived from the generated model. To overcome this problem, designer
feedbacks are necessary and, more generally, it should be wise to superpose to the soft-
ware engineering process risk management.

Future work should cover automatic derivation of the properties to be verified from
the system requirements. By using such approach, we should also assess the property
languages in more details.

Acknowlegements
This work was developed with the grant CAPES STIC-AmSud 003/07 TAPIOCA : Tim-
ing Analysis and Program Implementation On Complex Architectures and supported by
the French AESE project Topcased.

References
Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P., Lang, F.,

and Vernadat, F. (2008). Fiacre: an intermediate language for model verification in the
TOPCASED environment. Proceedings of the 4th European Congress on Embedded
Real-Time Software ERTS’08(Toulouse, France).

Berthomieu, B., Peres, F., and Vernadat, F. (2007). Model checking bounded prioritized
time petri nets. In Namjoshi, K. S., Yoneda, T., Higashino, T., and Okamura, Y.,
editors, ATVA, volume 4762 of Lecture Notes in Computer Science, pages 523–532.
Springer.

Berthomieu, B., Ribet, P., and Vernadat, F. (2004). The tool TINA – construction of ab-
stract state spaces for petri nets and time petri nets. International Journal of Production
Research, 42(14).

Dissaux, P. and Singhoff, F. (2008). Stood and cheddar: Aadl as a pivot language for
analysing performances of real time architectures. In 4th European Congress ERTS
EMBEDDED REAL TIME SOFTWARE.

I Workshop de Sistemas Embarcados 163



Edmund, S. C., Clarke, E. M., Sharygina, N., and Sinha, N. (2004). State/event-based
software model checking. In In Integrated Formal Methods, pages 128–147. Springer-
Verlag.

Feiler, P., Gluch, D., and Hudak, J. (2006). The architecture analysis & design language
(AADL): An introduction. Technical report, Software Engineering Institute, Carnegie
Mellon University.

Franca, R. B., Bodeveix, J.-P., Filali, M., Rolland, J.-F., Chemouil, D., and Thomas,
D. (2007). The AADL behaviour annex – experiments and roadmap. In ICECCS
’07: Proceedings of the 12th IEEE International Conference on Engineering Complex
Computer Systems, pages 377–382, Washington, DC, USA. IEEE Computer Society.

Håkansson, J., Carlson, J., Monot, A., Pettersson, P., and Slutej, D. (2008). Component-
based design and analysis of embedded systems with uppaal port. In ATVA ’08: Pro-
ceedings of the 6th International Symposium on Automated Technology for Verification
and Analysis, pages 252–257, Berlin, Heidelberg. Springer-Verlag.

Schmidt, D. (2006). Model-driven engineering. IEEE Computer, 39(2).

Team, S. A. (2004). OSATE: An extensible source aadl tool environment. Technical
report, Software Engineering Institute, Carnegie Mellon University.

Topcased. (toolkit in open-source for critical apllications and systems development).
http://www.topcased.org.

164 Anais




