

Evaluation of the impact of code refactoring on embedded
software efficiency

Wellisson G. P. da Silva1, Lisane Brisolara1, Ulisses B. Corrêa2, Luigi Carro 2

1Universidade Federal de Pelotas (UFPEL) - Pelotas – RS – Brazil

2Universidade Federal do Rio Grande do Sul (UFRGS) - Porto Alegre – RS – Brazil

wguilhermino@gmail.com, lisane.brisolara@ufpel.edu.br,
ubcorrea@inf.ufrgs.br, carro@inf.ufrgs.br

Abstract. The increasing complexity of embedded software and the hard time-
to-market requirements, motivate to the use of object-oriented languages.
However, this usage can negatively impact on energy consumption as well as
on performance. Code refactoring are techniques that change the code in
order to improve the software quality. This paper analyzes how the inline
method refactoring, a software optimization technique, can impact on the
performance and energy of embedded software written in Java. Three different
applications are evaluated in order to discuss this impact.

1. Introduction

Complex embedded systems have hard constraints regarding performance, memory, and
energy and power consumption [1]. Although these physical properties are more closed
to hardware, the way the software interacts with system resources has impact on power
and energy consumption as well as on performance [2]. Moreover, the embedded
system domain is driven by cost and time-to-market factors [3], which also influence the
design decisions taken by embedded software developers.

 To handle the increasing complexity of embedded software and the hard time-to-
market requirements, the use of object-oriented languages became more important
mainly due its modular and reusable code. However, object-oriented (OO) languages
can introduce penalties to system power and energy consumption and performance [3].
In this scenario, embedded software designers should handle the software complexity
and produce efficient software at the same time.

 Refactoring is a software engineering technique that modifies the code to
improve its readability and maintainability without changing its computation [4].
Method inline is a common refactoring method as well as a well-known code
optimization technique. This work discusses the impact of the method inline on system
performance and energy consumption when it is applied to Java codes. The objective is
help designers to understand how OO practices affect these physical properties and
evaluate if refactoring is a valid strategy to explore the embedded software design
space.

 The remaining of this paper is organized as follows. Section 2 gives the
background. Section 3 presents the used methodology and target platform, while results
are discussed in Section 4. Conclusions and future work are presented in Section 5.

I Workshop de Sistemas Embarcados 145

2. Background

There are three main sources of power consumption in embedded systems [3], which
are: processor power consumption, due to the processor activity, memory power
consumption, for accessing data and instructions in memory, and the power
consumption to connect the processor and memories. All these operations should be
taken in account, when developing embedded software. Moreover, some software
engineering practices can directly impact system power consumption and performance,
like code refactoring.

 Refactoring is a process of modifying the code to make it easier to understand
and modify without changing its computation as defined in [4]. These code changes can
also affect the system performance and energy consumption, since it modifies the
instructions that will be used. Examples of changes that can be done are Extract Method
– which creates a method to represent duplicate code – or Inline Method – which
exchanges a method call for its body. Inline is not recommended by the software
engineering best practices, because it can make the code hard to understand and so
decrease code maintainability. However, the Inline Method is expected to increase
performance since it removes the overhead of a method call – each method call in the
Java Virtual Machine has a cost associated [5]. This work has as objective to analyze
how method inline impacts performance and energy consumption for Java codes.

3. Methodology and Target Platform

Through dynamic profiling of the application code, information about the number of
method calls are obtained then we apply the method inlines incrementally. In this way,
the first most frequently called method is inlined in the first iteration (modifying
original code and generating Iteration1 version) and the second one is inlined
generating the Iteration2 version, and so on. Thus, the gains achieved by the reduction
of method invocations can be increased. After that, several versions of the same
application are generated.

 In order to obtain performance and energy consumption for these several Java
code versions, an estimation tool called DESEJOS was used [6]. As embedded platform,
we adopted the FemtoJava [7] processor. This processor is a stack based Java Virtual
Machine implementation, executing Java bytecodes natively. We chose FemtoJava and
DESEJOS due to their use of Java, a language that is gaining attention on the embedded
community.

 The FemtoJava processor implements a stack machine compatible with the Java
Virtual Machine (JVM) specification and that is able to execute Java code in hardware.
Two different versions of the FemtoJava processor are available: multicycle and
pipeline. In this experiment, we adopted the multicycle version that is targeted to low
power embedded applications.

4. Experimental Results

Three applications are used as case studies, an address book implemented with a hash
table, a game called Sokoban, and also an Mpeg layer-3 audio decoder from the Spec
jvm2008 benchmark set [8]. Table 1 presents values of metrics obtained by the Eclipse
IDE Plug-in called Metrics [9] for each application. These metrics gives an idea about
the complexity of the studied applications. According to these metrics, the MPEG

146 Anais

decoder is the used application with higher complexity, since it presents the higher
number of classes, objects, and packages, besides the higher McCabe ciclomatic
complexity, well-know measure for the complexity of a program.

Table 1. Complexity of the applications

 Address Book Sokoban MPEG Decoder
Number of classes 2 7 51

Number of methods 31 49 184
Number of packages 1 2 80

McCabe Ciclomatic Complexity 37 109 120

 Figure 1 (a) and (b) and Figure 2 (a) and (b) present performance (in cycles) and
energy consumption (in Joule) for the different code versions, generated by inline
refactoring, of the Address book and of the Sokoban, respectively. These results show
that this refactoring method achieved improvements in performance and energy
consumption for both applications.

(a) Performance results of the Address book (b) Energy consumption results of the Address book

Figure 1: Performance and Energy consumption results for the Addrees Book

(a) Performance results of the Sokoban (b) Energy consumption results of the Sokoban

Figure 2: Performance and Energy consumption results for the Sokoban

 Figure 3 (a) and (b) illustrates the results for performance (in cycles) and energy
consumption (in Joule) achieved for the different code versions of the MPEG decoder.
The performance results show that the cycles required by the application are reduced
when the inline method is applied, as expected, since cycles used to create frames for
each method call are eliminated. However, the energy results of the MPEG-Audio
decoder were not as expected (see Fig. 3b). After the third refactoring iteration, which
has a greater gain from its antecessors, all remaining versions have higher consumption
and the last ones have a consumption worse than the original code (without any inline
applied).

I Workshop de Sistemas Embarcados 147

(a) Performance results of the MPEG decoder (b) Energy consumption of the MPEG decoder

Figure 3: Performance and Energy consumption results for the MPEG decoder

 To better analyze the achieved results for energy consumption, we have
analyzed the Java bytecodes and have obtained the instruction histogram for the
execution of the different code versions in which the results are not the expected.
Summarized results of these histograms can be observed in Table 2 and Table 3.

 Table 2 shows the instructions that presented different number of calls between
the Iteration2 and Iteration3, whose versions present the lowest energy consumption
(see Fig. 3b). A reduction in the number of iload_1 instructions can be observed in the
Iteration3 results in Table 2, as well as an equivalent increase in the number of iload
instructions. These instructions require one more access to memory than the iload_<n>
instructions (like iload_0, …, iload_3). This extra memory access is used to load the
index of which variable in the pool will be popped on the JVM operand stack, unlike the
simpler iload_<n> instructions that has this address implicitly defined. Moreover, these
results show reductions in the number of invokevirtual and ireturn instructions that
represents an invocation of a class instance method in Java and the return instruction,
respectively. These reductions were expected, since the inline removed method calls.
Besides, a great reduction in the number of the aload_0 instructions can be observed in
Table 2.

 Table 2. Main instructions used for the Iteration 2 and 3

Instruction Iteration 2 Iteration 3 Difference
iload 2256402932 2284795276 28392344

iload_1 117059899 88667555 -28392344
aload_0 1058245488 916283768 -141961720
istore 372594809 400987153 28392344

istore_1 28458885 66541 -28392344

ireturn 41305600 12913256 -28392344

invokevirtual 37981918 9589574 -28392344

 To observe the increasing on energy provoked by inline, the difference between
the third and fourth iterations is analyzed. Table 3 shows the number of used
instructions for each code version (Iteration 3 and Iteration 4) and the difference
between these numbers. The results show a great increase in the number of iload
instructions and also a decrease in iload_2 instructions, and yet an increase in the
number of getfield instructions. Moreover, Table 3 shows the effect of the inline
method, where the number of method calls is decreased, provoking a reduction in the
number of invokevirtual and return instructions. In addition to that, the inline affected

148 Anais

the number of method´s local variables causing a changing of position in the variable
pool. This changing can be noted in the variation of istore and istore_1 instructions.
With the method scope increasing the variable that occupied the second position in the
variable pool went to a new position after the fourth position, generating the necessity
of an istore instruction. The increase of iload is a consequence of the inline method,
which inserted more local variables to the method and the instructions iload_0, iload_1,
iload_2 and iload_3 cannot be used.

Table 3. Main instructions used for the Iteration 3 and 4

Instruction Iteration 3 Iteration 4 Difference
iload 2284795276 2383364176 98568900

iload_2 289277504 190708604 -98568900
aload_0 916283768 939206768 22923000

aload_1 203437622 178986422 -24451200

istore 400987153 401751253 764100

istore_2 16634671 15870571 -764100

return 6336716 5572616 -764100

getfield 1169270767 1241096167 71825400

invokevirtual 9589574 8825474 -764100

 The experiments show that for more complex application with more complex
methods, as the MPEG decoder (the most complex application from Table 1), the inline
method cannot achieve the expected improvements for energy or performance. Loss in
energetic efficiency occurs when after inlining, the new method body/scope increase too
much then simpler instructions have to be changed by more complex instructions.
Moreover, indiscriminate inlining generates an increasing in the number of instructions
related with Object Oriented Programming (like getfield).

5. Conclusions and future work

This paper studies the impact on the embedded system performance and energy
consumption when the method inline refactoring is applied to Java codes. The Inline
Method was expected to increase performance and decrease energy consumption since
it would reduce the number of cycles to create a frame in the Java Virtual Machine for
every method call. The expected results were achieved for the Address Book and
Sokoban applications, but not for the MPEG decoder, which is the most complex
analyzed application. Moreover, the results have shown that when applying inline in a
method, the complexity of the method and whole application should be taken in
account. It is because the reduction of a method call does not result in a gain when the
method has many variables to be addressed in the variable pool.

 As future work, we plan to explore other refactoring methods and case studies.

References
[1] Graaf, B.; Lormans, M.; Toetenel, H. “Embedded Software Engineering: the State of

the Practice”. IEEE Software, v. 20, n. 6, p. 61- 69, Nov. – Dec. 2003.

I Workshop de Sistemas Embarcados 149

[2] Saxe, E. “Power Efficient Software”. Communication of the ACM. v. 53, n. 02, Feb.
2010.

[3] Chatzigeorgiou, A. and Stephanides, G. “Evaluating Performance and Power of
Object-Oriented vs. Procedural Programming in Embedded Processors”. Proc. of
International Conference on Reliable Software Technologies, Ada-Europe 2002,
Vienna, Austria, June 17-21, 2002.

[4] Fowler, M. “Refactoring: Improving the Design of Existing Code”, Addison
Wesley, 14th printing, 2004.

[5] Sun Microsystems, Inc. “The JavaTM Virtual Machine Specification”,
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html,
March, 1999.

[6] Mattos, J.C.B., Carro, L. “Object and Method Exploration for Embedded Systems
Applications”. Proc. of Symposium on Integrated Circuits and Systems Design,
SBCCI 2007, Rio de Janeiro, Brazil, 2007.

[7] Ito, S. A., Carro, L., & Jacobi, R. P. “Making java work for microcontroller
applications”. IEEE Design & Test of Computers, v.18, n. 5, p.100-110, 2001.

[8] SPECjvm2008 (Java Virtual Machine Benchmark), http://www.spec.org/jvm2008.

[9] Metrics Eclipse Plug-in, http://metrics.sourceforge.net/.

150 Anais

