
Using a Cloud-based Event Service for Managing Context
Information in Mobile and Ubiquitous Systems

Waldir R. Pires Junior1, Antonio A. F. Loureiro1, Ricardo A. R. Oliveira2

1Department of Computer Science – Federal University of Minas Gerais
Belo Horizonte – MG – Brazil

2Department of Computer Science – Federal University of Ouro Preto
Ouro Preto – MG – Brazil.

{wpjr,loureiro}@dcc.ufmg.br, rabelo@iceb.ufop.br

Abstract. In mobile and ubiquitous computing systems, profile and context in-
formation from mobile users constantly change over a period of time. It is also
desired for local and remote services to effortlessly access this information for
adaptation of activities and event notification for mobile users. This work pro-
poses an event-based system for managing context information in ubiquitous
services and applications. This approach uses an event service to manage the
events representing local and remote changes in the environment, allowing rele-
vant information to be shared amongst interested services and mobile users. In
our tests, an event service (tourist guide scenario) proved useful in disseminat-
ing changes in profile and context information between entities in a simulated
ubiquitous environment.

Resumo. Em sistemas computacionais móveis e ubiquos, informações de perfil
e contexto de usuário móveis podem sofrer mudanças constantes durante um de-
terminado perı́odo de tempo. É desejável também que serviços locais e remotos
possam acessar de uma forma simples e unificada estas informações a fim de
proverem recursos tais como adaptação de atividades e notificação de eventos
para usuários móveis. Este trabalho propõe um sistema baseado em eventos
para o gerenciamento de mudanças de perfil e contexto locais e remotos, per-
mitindo assim o compartilhamento de informações entre serviços e usuários
móveis de interesse. Nos testes realizados (guia turı́stico), o servidor de eventos
proposto mostrou-se útil em disseminar as mudanças de informações de perfil e
contexto entre entidades em um ambiente ubı́quo simulado.

1. Introduction
Ubiquitous computing defines a new computational model of human-machine interaction
in which information processing is integrated to daily objects and activities for the user.
In this new paradigm, a user can activate and participate in several simultaneous and un-
conscious tasks and activities, in some cases not even being aware of the devices present
in the surrounding environment. This introduces the necessity of context-aware comput-
ing, which proposes the capability of devices to sense changes in the environment and in
the user’s behavior. Context is defined [Dey 2001] as being “any information that can be
used to characterize the situation of entities”, such as the location, time of day, people,
devices and services nearby, and user activities. Ubiquitous computing makes use of this

XV Workshop de Gerência e Operação de Redes e Serviços 117



information collected from the environment for context definition and service adaptation
in real time. This adaptation is defined [Rossi and Tari 2006] as the capacity of a sys-
tem or middleware of modifying its behavior in response to changes in the environmental
context. In this way, mobile applications as well as remote services can utilize the in-
formation collected and present at the context for providing services and content for the
mobile user and for applications and services present at the mobile device.

Ubiquitous environments, in general, contain applications and network elements
that are both heterogeneous and distributed in fashion. They are heterogeneous in the
sense of performing different types of tasks for the user, requiring different sets of hard-
ware and software components. They are also distributed in such a way that services
may be composed of more than one computing element. For instance, a network element
may depend on other devices for obtaining information about the environment and exe-
cuting tasks for the user. As a result, a distributed communication model is required to
seamlessly integrate these elements in the environment.

In the following, we briefly describe a tourist guide application that conveys the
ideas discussed in this work. Suppose a tourist begins his/her day at the hotel and uses
a mobile phone or PDA to search for tourist attractions and confirming the purchase of
electronic tickets. While the tourist guides (people and companies) are contacted by the
guiding system, the tourist can confirm the weather forecast and elaborate a route around
the city. The route information is sent to the system, which offers existing services in the
path such as shopping options, restaurants, among other activities.

After the tourist has begun his/her trip, the tourist guide application, based on pre-
vious defined interests and the necessary tickets purchased early in the morning, presents
some leisure options that interest him/her the most. Caring about good services, the tourist
remembers to leave a favorable comment to this guide in the service quality evaluation
system. While visiting each attraction point, the tourist receives at his/her mobile de-
vice an electronic flyer describing the attraction and, according to his/her interests, some
propaganda of products on sale at each location.

At any moment, the tourist may change his/her path. The guiding system run-
ning on the mobile device detects this change in the location and updates the information
related to the services offered in this new path. In case the tourist is lost, the user can
request some directions from the map service provided by the system, allowing him/her
to return to the previously planned route and the attractions defined previously, or follow
onto a new attraction of interest.

1.1. Problem and Contribution

Depending on the scenarios involved, user profile and context information may suffer
constant changes over a period of time. Take for instance, changes of weather and traf-
fic information, user or device location and state. Tourist guide applications are a good
scenario example, since they contain virtually all the characteristics mentioned above. Ac-
tivities initially selected by the user may become unfeasible due to traffic and/or weather
conditions at that region or the user may simply not feel well or up to performing that
activity due to his/her condition. The mobile device may also suffer difficulties or limita-
tions at a certain moment, such as energy constraints, connectivity state and transmission
costs.

118 Anais



This variability in profile and context information at context-aware ubiquitous ap-
plications promotes a significant challenge in managing these changes in a distributed
mobile computing environment. This challenge includes the need to detect, collect, pro-
cess, publish, subscribe and consume occurring events in the system. These changes
occur in the environment (e.g., physical or logical) where the device is located, and the
events generated must incorporate information relative to these changes. Physical context
can be defined as the information relative to the outside environment, such as the user
location, traffic and weather states, among others. Logical context relates to the condi-
tions concerning the user and the mobile device, such as mood, time availability, battery
level, connectivity state, among others. Interested event consumers use this information
for reaction to changes detected, for example, by the means of adaptation and notification.

The main contributions of this work are:

• Management of local/remote profile and context information from the user:
This work provides the provisioning of profile and context information from the
user, application and the environment to other entities (e.g., other mobile users
and Web-based services) in a mobile/ubiquitous system.
• Fast provisioning of profile and context information from the user to other en-

tities: This work allows ubiquitous applications and services to distribute, access
and share profile and context information amongst other entities in a decoupled
and distributed manner by using event objects and notification messages sent over
the wireless network.
• Usage of a cloud-based infrastructure for the provisioning of ubiquitous ap-

plications and services: This work makes use of cloud computing model based
on some features such as the virtualization of hardware and software resources at
the server side, making these features accessible in a seamless manner in the form
of services on the Internet.

This paper is organized as follows. In Section 2, we briefly describe the related
work. In Section 3, we present the event-based model proposed in this work, its architec-
ture and the event processing workflow. In Section 4, we present the case study chosen
for evaluating the proposed service called the DroidGuide. In Section 5, we discuss the
conclusions and future work.

2. Related Work
Context-aware computing in ubiquitous environments and event-based distributed sys-
tems define the main areas of research of our work. The event-based communication
model defined in Meier and Cahill [Meier and Cahill 2002] describes a useful paradigm
in providing the interconnection between elements that comprise applications for ubiq-
uitous environments in an asynchronous manner. This model allows the association be-
tween application components (producers and consumers) and events that are generated
in ubiquitous system by the means of notification messages. It enables elements (de-
vices, components and applications) to react to state changes of other elements, providing
interested parties with notification messages based on these changes.

Muhl et al. [Muhl et al. 2006] define an event as being an occurrence of interest
that can be observed by a computer element (e.g., PC, sensor, or any other device). One
can define an event in a more global aspect as being a change of state where a system

XV Workshop de Gerência e Operação de Redes e Serviços 119



entity is responsible for creating an event instance representing the changes in which
other elements will respond, react and/or adapt by the means of imposed rules at the
service and application levels. In our work, changes in the environment are represented
by event objects that may be consumed by client peers and Web services.

Caporuscio and Inverardi [Caporuscio and Inverardi 2005] present a design of an
event-based system, which allows applications to detect events at a certain region and
evaluate their relevance and uncertainty taking into account the applications’ main con-
text. This allows the application to adapt to certain environmental conditions and reach its
purposes. A specification is presented which includes the design of a prototype based on a
publish/subscribe middleware. Other event-based systems proposed include Sacramento
et al. [Sacramento et al. 2004] who proposed a middleware architecture for the devel-
opment of context-aware services and applications for wireless network environments.
Carzaniga et al. [Carzaniga et al. 2001] also propose four architectural solutions for dis-
tributed event-based systems: client/server, acyclical P2P (Peer-to-Peer), redundant P2P
and hybrid. Those proposals can be used in the construction of context-aware ubiquitous
systems for the dissemination of context information amongst various client peers.

Despite the solutions above, we chose to utilize a client/server architecture pro-
vided by the cloud-based computing model for several reasons. Some justifications in
using this model for the virtualization of services and resources over the Internet include
support for popular Web-based application layer protocols such as HTTP and XMPP, ser-
vice mobility (e.g., device and location independent), flexibility (e.g., speed in redefining
computing resources and scalability) and the possibility for application designers to focus
on other application issues rather than in service and platform infrastructure.

Several use case scenarios may benefit from the usage of ubiquitous applica-
tions and services. These scenarios in general contain functional requirements such as
the need for collecting, processing and sharing profile and context information from the
user/application, adaptation, and non-functional requirements such as security, usability
and mobility. The adaptation occurs according to the user’s intentions and interests, to the
graphical interface and to available services for the mobile user while security involves
privacy, authentication, authorization and anonymity. From all those scenarios, we chose
to construct and evaluate one: an electronic tourist guide.

3. The Event-based Service
The service proposed in this work is based on the event-based model described
in [Muhl et al. 2006]. Our model comprises of nodes in three different categories: client,
server, and service. Client nodes represent the mobile users containing devices capable
of accessing services over a wireless network. The server node contains an interface for
accessing available information-based remote services. These services are represented by
service nodes that can receive events from the client and server nodes and respond back
to the server when required. Client nodes can access the available Web services and other
client peers by using the existing server node.

An overview of the related scenario can be seen in Figure 1. In this overview, one
can note the presence of mobile and fixed users accessing and providing information to
services available over the Web. The information shared is represented by event objects
created, published and consumed by each entity in the system. In order for entities to be

120 Anais



capable of publishing and consuming these events to all interested parties, an event-based
server receives and dispatches events to consumers according to subscriptions to elements
such as interested services, activities and topics. In this way, only events that match the
entities interests are delivered to each client. This event-based service offers subscription
and event management services related to profile and context information collected from
participating entities in the system.

Figure 1. An overview of the proposed service.

The proposed service in our work contains several responsibilities in the ubiq-
uitous computing environment. First, the service must periodically detect and collect
changes in profile and context information from the mobile user. This is done in order
to detect explicit and implicit changes in the environment, such as changes in location,
interests and conditions, among others. In order to maximize the communication between
client and server peers, the event processor located at the client plays an important role
by creating event objects whenever there are local changes in profile and context infor-
mation. In this way, the processor only reports the collected changes to the remote event
service located at the server.

Secondly, our event service allows access to profile and context information by
Web-based services in the form of event subscriptions based on interest topics. Suppose,
for instance, that the mobile user wishes to change his logical context condition, such as
mood or hunger state. If the mobile user feels agitated or hungry, he/she updates this
condition at the mobile application in execution while in transit or inside a tourist activity.
With this logical context update, the event processor detects the changes and sends them to
the event server for further processing. The event server then publishes this information
to services interested in the user’s mood and hunger states. Based on the information
received, nearby services and activities can be offered to the user, allowing him/her to rest
or eat in locations nearby his/her position. By defining his/her preferences, the mobile
user informs the event server the desire to share his/her profile and context information,
allowing these services to monitor and react to changes informed by the user.

3.1. System Architecture
The event-based service proposed in this work is composed of two main components:
the event server residing at a remote Web server and the event processor located at the

XV Workshop de Gerência e Operação de Redes e Serviços 121



client side. Both components are responsible for generating event objects representing
changes in the user profile and context information. The event server is responsible for
handling events generated at the server side and also process events detected at the client
side by the event processor. In turn, the event processor manages events detected at the
client side and receives notification messages from the event server. Web-based services
can take advantage of the relevant local and remote context information collected by the
event processor/service, by receiving and processing these events. As a result, the Event
Service Module provides subscription, filtering and event notification services to mobile
applications and services that are both local and remote in relation to the mobile user.

Different from the proposed architectures described in Carzaniga et
al. [Carzaniga et al. 2001], our system uses a cloud-based solution where client
peers connect to a unique server. This was done to simplify the development process and
infrastructure provisioning at the server side. Cloud computing is a style of computing
in which dynamically scalable and often virtualized resources are provided in the form
of a service on the Internet [Miller ] . As a result, applications and infrastructure reside
not locally, but at a remote location accessible over the Internet. Therefore, users
do not require having the knowledge of, expertise in, or control over the technology
infrastructure in the ”cloud” supporting them.

3.2. Event System Classification

A taxonomy has been proposed [Meier and Cahill 2002] for classification of event-
based systems in several characteristics, such as the event model used, event ser-
vice characteristics and functional/non-functional features available. Other event-
based systems have been used in the classification, such as the CORBA notification
service model1, SIENA [Carzaniga et al. 2001], SECO [Haahr et al. 2000] and Her-
mes [Pietzuch and Bacon 2002]. Figure 2 describes the event service organization and
interaction model as defined in the taxonomy for the service proposed in this work.

According to this taxonomy, the event service proposed in this work can be clas-
sified as follows. It implements a single mediator with a separated middleware, single
centralized intermediate event model. It uses a single mediator between existing entities
in the system, with this mediator being centralized and separated physically (different
machines) and logically (different address space) from producers and consumers. In re-
spect to the event propagation models defined in the taxonomy, our event system uses
periodic pull, with typed events based on application specific attributes and without event
hierarchy. The event service is an intermediate between mobile collaborative entities that
are both producers and consumers. Events are delivered on a best-effort basis with no
support for priority. Regarding failure handling, our system is characterized as a partial
system failure for entities, functional partial system failure or total system failure for the
event service middleware and partial or total system failure for the network. Other non-
functional requirements such as security and ordering were omitted in our work. Tables 1
and 2 present the functional and non-functional features of the event service proposed in
this work.

1http://www.omg.org/cgi-bin/doc?formal/04-10-13.pdf

122 Anais



(a) Event system overview. (b) Organization

(c) Interaction model

Figure 2. The organization and interaction model of the system proposed accord-
ing to the taxonomy [Meier and Cahill 2002].

4. Case Study: DroidGuide

This section presents the first case scenario with the prototype implementation of the
Tourist Guide scenario in the form of an emulated mobile application. This aims to evalu-
ate the capacity of the mobile device to detect and collect profile and context information
and allow user activity selection based on the profile information defined by the tourist.

The mobile application proposed provides several features to the mobile tourist
user. First, it displays a map containing all the activities available for him/her to consume,
as shown in Figure 3(a). Mobile users define their tourist profile data in order for the
system to propose activities and provide information regarding interest topics, as shown
in Figure 3(b). Mobile users also define their condition or state by entering their logical
context, as shown in Figure 3(c). Once profile and context information is defined, the
application may begin offering activities as well as notify mobile users regarding client
and server based events.

The software platforms used in our prototype application were Google Android2

and Google Web AppEngine3 for the client and server, respectively. Communication
was achieved by using HTTP request messages being sent from client to server while

2http://code.google.com/android/
3http://code.google.com/appengine/

XV Workshop de Gerência e Operação de Redes e Serviços 123



Characteristic Service Proposed Description
Event model Single mediator One event service mediator between entities.
Event service organisation separated single middle-

ware
Event service middleware in different address space.

Event service interaction
model and location

Single centralized inter-
mediate

Entities interact with a single mediator.

Event propagation model Periodic pull Request-response communication.
Event type Generic Events are generic throughout the system.
Communication Unicast, multicast and

broadcast
Entities communicate with each other using published events.

Expressive power Application specific
attributes

Attributes defined for the event define its epression.

Type hierarchy support No Support for inheritance between events.
Event implementation Object and String Events are represented as objects at the serve side and Strings

at the client side.
Event evaluation time Propagation Events are evaluated at propagation time.
Mobility Collaborative entity Mobile entities collaborate across the system space.

Table 1. Classification of the event service proposed in this work according to
the taxonomy.

Characteristic Service Proposed Description
Support for composite
events

Yes Programatic support.

Event delivery Best effort No deadlines associated with events.
Event priority support No Priorities for events at the event queue.
Store occupancy Configurable Support for memory (hash table structure) or DBMS persis-

tence.
Reliability Reliable connection and

(temporarily) and persis-
tent

Usage of a connection-oriented protocol (HTTP/TCP/IP)

Security support No Authentication, authorization and criptography.
Entity failure Partial system failure Partial failure at the entity.
Middleware failure Functional partial system

failure or total system fail-
ure

Depending on the failure, it can be partial (recovery) or total
(no recovery).

Network failure Partial or total system fail-
ure

Depending on the entities at the communication, being partial
(between entities) or total (between entities and middleware).

Table 2. Non-functional feature support according to the taxonomy.

the server communicates with clients via XML documents over the HTTP response mes-
sages. In our work, we used a pull-based [Muhl et al. 2006] client-server communication
approach by sending periodic request messages from the client to the server. This enables
the server to seamlessly send notification messages to client peers when required as well
as the client peers to send data to the event service.

To simplify the implementation and integration of the many responsibilities that
comprise the application, the DroidGuide guiding system was logically divided into mod-
ules with well defined responsibilities and relationships among them. As shown in Figure
4, these components are:

• At the mobile device: the profile and context management service (PCM), the
client event processor (CEP) and the communication module (CM);
• At the server: the event processing service (EPS), the subscription manager (SM),

the event container (EC) and the information-based remote-services container
(IBWS).

From all modules, two of them should be noted due to their importance: the Client
Event Processor (CEP) and the Communication Module (CM). The first one manages the

124 Anais



(a) Map with attractions. (b) User profile data. (c) User context data.

Figure 3. The Tourist Guide prototype developed on the Google Android Platform
2.0.

Figure 4. The Event-based system deployed into the DroidGuide application di-
vided into modules.

changes in profile and context information by storing client events to be sent to the event
server. The Communication Module manages the communication of all modules that
make up the application, which include sending requests, receiving and processing XML
messages from the server. The Event Processor uses a two-phase pull-based approach:
(a) it sends HTTP GET requests from client to server, and (b) receives XML over HTTP
response messages from the server to client. The communication module handles XML
parsing of incoming data messages from the server, converting them to generic property-
based objects. In our prototype, DOM (Document Object Model) parsing was used to
convert XML messages to Java objects.

Located at the client side, the profile and context management service (PCM) is
responsible for monitoring and collecting data regarding changes in profile and context
information at the mobile device. This service submits the collected changes to the client
event processor (CEP), which prepares the collected information for the communication
module (CM). The communication module sends the information to the event process-

XV Workshop de Gerência e Operação de Redes e Serviços 125



ing service (EPS) located at the server. Once the information arrives at the server, the
event processing service creates event objects representing them, stores them at the event
container (EC) and sends them to the corresponding consumers according to the existing
subscriptions managed by the subscription manager (SM).

Once these consumers (e.g., remote services) receive the incoming events, they
may also generate new events due either to the events received or changes in remote pro-
file and context information. In this case, they also generate events that are sent to the
event processing service. After storing the new events at the event container, the service
requests the subscription manager for subscriptions related to the new events and gen-
erates notifications to be sent to the client. At the HTTP response message, the service
sends the related notification messages to the client for further processing by the commu-
nication module and client event processor. This incoming message is presented to the
mobile user, for example, in the form of a popup message alerting him of the event.

4.1. The Execution Flow

DroidGuide begins by requesting the tourist to login with his/her username and password.
After the login process, the user is asked to define some attributes in his/her profile and
context data, as shown in Figures 3(b) and 3(c). This can be later updated, even if in
the future the tourist logs in again at another device containing the application. After the
tourist defines his/her profile and context data, the event service takes action by monitor-
ing local/individual or remote/global changes in this data. In the next step, the user is able
to select available information-based remote services available at the remote data server
for notification message provisioning. In our simulated scenario, two remote services
were provided: traffic and weather.

After the tourist selects the interested services, the application begins selecting
available tourist activities that can best suite his/her interests defined in the profile data,
taking into account the six styles or interests already defined by the user: consumer, his-
torical, environmental, gastronomical, bohemian, and cultural. The tourist grades each of
these styles with a score from zero (not interested) to ten (totally interested). In general,
every tourist activity available at the location contains a grade based on the same styles
presented to the tourist. For instance, a restaurant activity has a high grade in the gastro-
nomical style while a very low grade in environmental. Another activity, however, can
have high grades in two or more styles such as in activities that relate to both historical
and cultural styles. An example of the activity suggestion feature can be seen in Figure
5(b).

As proposed in the system, the tourist should also be capable of selecting other
activities not initially presented to him/her by the system. The service capable of activ-
ity selection can be seen in Figure 5(b). For instance, there can be activities in which
his/her friends have performed that were highly recommended to him/her and not initially
suggested by the system. This is possible due to the publish/subscribe feature also avail-
able at the proposed event service. In our prototype, activity selection is treated in the
same manner as in subscription to services and topics. Once the tourist selects the desired
activities, he/she may begin visiting these activities.

During the execution process, the service can deliver notification messages to in-
terested parties in case there are changes detected in the user’s profile and context data.

126 Anais



(a) Remote services. (b) Tourist activities.

Figure 5. Subscription elements available to the mobile user.

An example of a list of subscribed services can be seen in Figure 6(b). For instance, a re-
mote restaurant finder service is interested in knowing when the tourist is hungry. When
this occurs, the user updates his/her logical context data present at the mobile device.
This change causes the event processor to send data to the server, allowing the creation
of event objects representing the changes. The event service then shares these objects to
interested/subscribed services. Once the information-based service receives the event ob-
ject, it understands that a notification message must be sent to the user, informing him/her
of a possible restaurant nearby. In the end, the user receives the notification informing
him/her of the attraction nearby that can satisfy his/her hunger.

In our simulation, we created a weather event object at the server that was directly
related to one of the tourist’s interest topics and subscribed information-based remote
services. Due to the subscription to the weather service, this service will notify the user
with any changes of profile and context information occurring at the server – in our case
a change in weather condition.

Figure 6 shows the creation of a server-side event and its notification at the client
application. Figure 6(a) shows the notification screen presenting the incomming notifi-
cation from the server. Figure 6(b) shows the list of remote services subscribed by the
mobile user. Figure 6(c) shows the notification tab presenting the incomming notification
to the user.

5. Conclusion and Future Work

In this work, we presented an event-based service for the management of local and remote
profile and context information for client peers, as well as for information-based Web
services. The event service was capable of capturing changes in profile and context data
from both the client and the server sides. The events have been collected in the device
and sent to the server by the communication module. According to the interests defined
by the user in his/her profile, tourist activities were selected accordingly. Subscriptions

XV Workshop de Gerência e Operação de Redes e Serviços 127



(a) Notification screen. (b) Subscribed services. (c) Notification tab.

Figure 6. Notification of a server side event at the client.

to information-based services showed the viability of using events in these services for
ubiquitous applications. These services were capable of sending notification messages
to the client application, due to the creation of remote event objects when changes in
remote/global context information were detected.

The future work may follow in several directions: (i) the evaluation of the event-
based service in other environments and scenarios (for instance, in vehicular networks and
in elderly care centers), (ii) definition of event processing profiles allowing event process-
ing configuration according to the needs of the application (e.g., client, client and server
and server), (iii) security (user authentication, anonymity and authorization and data en-
cryption/decryption of messages) and message compression during transmission, and (iv)
the evaluation of collaborative context-aware computing scenarios, the relationship and
interaction amongst client peers.

References

Caporuscio, M. and Inverardi, P. (2005). Uncertain event-based model for egocentric con-
text sensing. In SEM ’05: Proceedings of the 5th international workshop on Software
engineering and middleware, pages 25–32, New York, NY, USA. ACM.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2001). Design and evaluation of a
wide-area event notification service. ACM Trans. Comput. Syst., 19(3):332–383.

Dey, A. K. (2001). Understanding and using context. Personal Ubiquitous Comput.,
5(1):4–7.

Haahr, M., Meier, R., Nixon, P., Cahill, V., and Jul, E. (2000). Filtering and scalability
in the eco distributed event model. In PDSE ’00: Proceedings of the International
Symposium on Software Engineering for Parallel and Distributed Systems, page 83,
Washington, DC, USA. IEEE Computer Society.

128 Anais



Meier, R. and Cahill, V. (2002). Taxonomy of distributed event-based programming sys-
tems. In ICDCSW ’02: Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems, pages 585–588, Washington, DC, USA. IEEE Computer
Society.

Miller, M. Cloud computing pros and cons for end users.
http://www.informit.com/articles/article.aspx?p=1324280.

Muhl, G., Fiege, L., and Pietzuch, P. (2006). Distributed Event-Based Systems. Springer,
1st edition.

Pietzuch, P. R. and Bacon, J. (2002). Hermes: A distributed event-based middleware
architecture. In ICDCSW ’02: Proceedings of the 22nd International Conference on
Distributed Computing Systems, pages 611–618, Washington, DC, USA. IEEE Com-
puter Society.

Rossi, P. and Tari, Z. (2006). Software adaptation for service-oriented systems. In
MW4SOC ’06: Proceedings of the 1st workshop on Middleware for Service Oriented
Computing (MW4SOC 2006), pages 12–17, New York, NY, USA. ACM.

Sacramento, V., Endler, M., Rubinsztejn, H. K., Lima, L. S., Goncalves, K., Nascimento,
F. N., and Bueno, G. A. (2004). Moca: A middleware for developing collaborative
applications for mobile users. IEEE Distributed Systems Online, 5(10):2.

XV Workshop de Gerência e Operação de Redes e Serviços 129




