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1Laboratório de Sistemas Distribuı́dos (LaSiD)
Departamento de Ciência da Computação
Universidade Federal da Bahia (UFBA)

Campus de Ondina - Salvador - BA - Brazil

2Instituto Federal da Bahia (IFBA) - Campus de Salvador - BA - Brazil

macedo@ufba.br, allan@ifba.edu.br

Abstract. Since the eighties that Group Communication is being proposed as a
powerful abstraction to design fault-tolerant distributed applications in a vari-
ety of distributed system models, ranging from synchronous, to time-free asyn-
chronous model. Though similar in principles, to date, distinct specifications
and implementations have been employed for distinct system models. How-
ever, the nature of many modern distributed systems, with dynamic and varied
QoS guarantees, imposes new challenges where integration, self-awareness and
adaptation to available QoS are common requirements. This paper tackles this
challenge by proposing a group communication mechanism capable of handling
group communication for self-aware distributed systems whose model properties
can vary with time. For example, it can dynamically switch to the asynchronous
version when the run-time system can no longer guarantee a timely operation.
The protocol is proved correct in this paper and a performance evaluation is
presented for distinct QoS scenarios.

1. Introduction

Since the eighties that Group Communication is being proposed as a powerful abstraction
to design fault-tolerant distributed applications in a variety of distributed system models,
ranging from synchronous, to time-free asynchronous model. Though similar in princi-
ples, to date, distinct specifications and implementations have been employed for distinct
system models [Birman 1993, Cristian 1996, Chandra et al. 1996, Chockler et al. 2001,
Bessani et al. 2003, Défago et al. 2004]. The choice of a given system model determines
the quality-of-service (QoS) to be observed for the related group communication service,
such as message delivery and consistent membership view guarantees.

In synchronous systems, message transmission and process execution delays are
bounded. This model simplifies the treatment of failures because a process failing to
send a message (or processing it) within the delay bound can be considered to have
crashed. As a consequence, several problems related to fault-tolerant computing, such
as membership, consensus, and atomic broadcast have been solved in such a model
[Cristian 1991, Kopetz and Grunsteidl 1994, Cristian et al. 1995].

In an asynchronous system, on the other hand, there is no known bound for mes-
sage transmission or processing times. This makes the system more portable and less sen-
sitive to operational conditions (for example, long unpredictable transmission times will
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not affect safety properties of the system). However, problems such as distributed consen-
sus [Fisher et al. 1985]1 and (primary-partition) group membership [Chandra et al. 1996]
cannot be solved in this model unless some additional assumptions are considered. Based
on the observation that, in practice, most systems (specially those built from off-the-shelf
components) behave synchronously, but can have ‘unstable’ periods during which they
behave asynchronously, researches have successfully identified stability conditions nec-
essary to solve fundamental fault-tolerant problems such as consensus and atomic broad-
cast[Dolev et al. 1987, Chandra and Toueg 1996]. Such theoretical results allowed the
implementation of group services in these so-called partially synchronous environments
[Chockler et al. 2001, Défago et al. 2004].

Other researches have considered hybrid systems composed by synchronous and
asynchronous parts. This is the case of the TCB, which relies on a synchronous worm-
hole to implement fault tolerant services [Verı́ssimo and Casimiro 2002]. Another ex-
ample is the so-called real-time dependable channels (RTD) that allow an application
to customize a channel according to specific QoS requirements [Hiltunen et al. 1999].
Resource reservation and admission control have been used in QoS architectures in or-
der to allow processes to dynamically negotiate the quality of service of their commu-
nication channels, leading to settings with hybrid characteristics that can change over
time [Aurrecoechea et al. 1998]. In this context, we have addressed the problems of
consensus over a spanning tree of timely channels [Gorender and Macêdo 2002], per-
fect failure detection [Macêdo and Gorender 2009] and uniform consensus for hybrid and
dynamic distributed systems [Gorender et al. 2007]. To cope with hybrid and dynamic
distributed systems we defined non-homogeneous distributed systems where each pro-
cess or channel can have a distinct QoS (timely or untimely) that can change over time
[Macêdo and Gorender 2009]. Moreover, we introduced the notion of self-awareness
where the set of system processes is partitioned into three sets (life, uncertain and down)
that are automatically updated by monitoring mechanisms to reflect the current state of
the underlying computing and communication systems.

A challenge not adequately addressed in the existing literature concerns the de-
velopment of group communication services that can be configured to work with either
synchronous or asynchronous environments [Cristian 1996]. Besides simplifying system
design, an integrated approach would allow the implementation of group communication
for hybrid distributed systems whose characteristics can change over time. This paper
tackles this challenge by presenting a generic solution for group communication over
self-aware distributed systems. This solution that can be used in any configuration, rang-
ing from synchronous, to asynchronous, to dynamic and hybrid distributed systems - no
need to change the group communication algorithms.

Our solution is based on an extension of the so-called Causal Blocks model used
for asynchronous systems - a framework for developing group communication protocols
and related services with a number of ordering and reliability properties (e.g. ordered
message delivery in overlapping groups, flow control etc.) [Macêdo et al. 1995]. Because
it combines physical clock time and logical time in the same infrastructure, the extended
model (denoted Timed Causal Blocks - TimedCB) represents an integrated framework

1Consensus can be used as a building block to implement membership protocols
[Chandra and Toueg 1996].
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capable of handling group communication for both synchronous and asynchronous dis-
tributed systems. This is especially relevant to achieve dynamic adaptation (one could
switch to the asynchronous version when timely conditions can no longer be met) and
fast message delivery (for instance, there is no need to wait for a timing condition when
some logical time property is already satisfied within a time window - for example, for
timely total ordered message delivery).

The present paper builds on our previous publications [Freitas and Macêdo 2009,
Macêdo and Freitas 2009a], by extending the previous results in the following way: the
group communication protocol now implements the uniform agreement on message de-
livery property, instead of the non-uniform version of [Macêdo and Freitas 2009a]. The
new property is very important since it guarantees that the set of delivered messages is
the same for any process (crashed or not) of a given group view. This is an important
requirement for applications such as distributed commit protocols used in database sys-
tems [Pedone et al. 1998]. Another enhancement of the present publication is the evalu-
ation of the protocol in the presence of faults, which forced us to implement the adap-
tive consensus protocol [Gorender et al. 2007]. Finally, besides simulating a conven-
tional group communication protocol for synchronous systems, this time we have also
implemented a conventional group communication protocol for asynchronous systems
[Kaashoek and Tanenbaum 1991]. Hence, we are able to compare the generic approach
working in the extreme case scenarios (synchronous and asynchronous behavior). A fi-
nal observation is that the three simulated protocols (the generic, the conventional syn-
chronous and the conventional asynchronous) implement the same uniform agreement on
message delivery property, which makes the present comparison fairer than the one of the
previous publication. The evaluation carried out shows the advantages of our approach
and provides insights on how the generic protocol can be adjusted to produce the best
trade-off between message delivery delay and overhead.

The remainder of this paper is structured as follows. Section 2 presents the model,
system assumptions and group communication properties from which the generic ap-
proach is built. The development of TimedCB is then presented in section 3. A simulation
environment and a performance evaluation of the proposed protocol in a synchronous
environment is presented in section 4, and conclusions are drawn in section 5.

2. The System Model and Assumptions
A system consists of a finite set Π of n > 1 processes, namely, Π = {p1, p2,...,pn}. Pro-
cesses communicate and synchronize by sending and receiving messages through chan-
nels and every pair of processes (pi, pj) is connected by a reliable bidirectional channel:
they do not create, alter, or lose messages. In particular, if pi sends a message to pj , then
if pi is correct (i.e., it does not crash), eventually pj receives that message unless it fails.
Transmitted messages are received in FIFO order.

A process executes steps (a step is the reception of a message, the sending of a
message, each with the corresponding local state change, or a simple local state change),
and have access to local hardware clocks with drift rate bounded by ρ. Processes are
assumed to fail by prematurely halting execution (i.e. crashing). Byzantines failures are
not considered. Processes that do not crash are named correct processes.

It is assumed that the underlying system is capable of providing timely and un-
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timely QoS guarantees for both message transmission and process scheduling times. For
a given timely channel it is known the maximum and minimum bounds for message trans-
mission times, denoted ∆max and ∆min, respectively. For timely processes, there is a
known upper bound φ for the execution time of a step. For untimely processes and chan-
nels, there is no such a known time bound. We assume that ∆ >> φ , so φ can be
neglected when calculating end-to-end message latencies. It is assumed that the underly-
ing system behavior can change over time, such that processes and channels may alternate
their QoS - due to failures and/or QoS renegotiations. It is assumed that the underlying
system is equipped with a monitoring mechanism that provides processes with the in-
formation about the current QoS ensured for a given channel or process. Besides, we
assume the mechanisms described in [Macêdo et al. 2005, Gorender et al. 2007], where
dynamic QoS modifications and process crashes lead to the observation of the sub-sets
live, uncertain, and down. That is, if pj ∈ livei, pj is timely and pj is connected to (at
least) another timely process pk (not necessarily k = i), by a bidirectional timely channel
(pj, pk). Otherwise, pj ∈ uncertain. If processes that crash were in live, they are moved
from live to down. Application processes become aware of dynamic modifications of the
distributed systems properties by reading the content of these sets. That is way we named
these systems as self-ware distributed systems.

Generic Group Properties Processes form a unique group g, whose initial configuration
is g = Π. Due to space limitations, multiple groups are not considered in this paper. A
process pi of a group g installs views, named vi(g) ⊆ Π. A view represents the set of
group members that are mutually considered operational. This set can change dynami-
cally on the occurrence of process crashes (suspicions) (or when processes leave or join
g - but these events are not considered in this paper). Every time a view change occurs,
a new view is installed, and each one is associated with a number that increases mono-
tonically. vk

i (g) denotes the view number k installed by pi. Where suitable, the process
identity of a view will be omitted (e.g., vk(g)), or the group identity (e.g., vk

i ). A pro-
cess pi multicast messages only to the processes of its current view. In general, a group
communication protocol must satisfy a number of safety and liveness properties, related
to both the views installed by distinct processes and the set of messages delivered. Such
properties vary from one implementation to another, following a given target computing
environment [Chockler et al. 2001, Cristian 1996]. The group communication suite pre-
sented in this paper aims at, among other applications, the implementation of the so-called
active replication of servers. Therefore, the properties specified for the presented protocol
must satisfy total order message delivery (respecting causality) and agreement on a linear
group view history [Schneider 1990, Lamport 1978]. In the following the properties of
our generic group communication protocol will be informally presented. A formal and
complete description of the protocol properties can be found in [Macêdo 2008].

To achieve message delivery liveness, the validity property assures that a correct
process will deliver at t+ ∆1 a message sent by it at time t. To achieve message delivery
safety, the properties that must be satisfied are uniform agreement (i.e. if a process
delivers a message in a view, all correct processes must do the same), uniform total order
and causal order, so the processes observe the same message delivery order, respecting
potential causality [Lamport 1978]. To assure view delivery liveness, a failure detection
property guarantees that if a process fails at a time t in a view, all correct processes will
detect it at time t + ∆2 and install a new view that excludes the failed process. For view
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delivery safety, correct processes must agree on a view, according to the unique sequence
of views property. Also, exclusions from a group must be justified by process crashes or
suspicions. That is, if a process does not belong to a new view, then either it failed or
it was suspected (exclusion justification). Finally, a process only installs a new view
if it belongs to it (self-inclusion). The bounds ∆1 and ∆2 are known if the system is
synchronous, and unknown, otherwise.

3. The Proposed Generic Approach

The Causal Blocks model is briefly presented in the following (a complete description
can be found elsewhere [Macêdo et al. 1995]. Each process maintains a logical clock
[Lamport 1978], named Block Counter, denotedBCi, and messages are sent timestamped
with the current block counter value. A process pi uses a Causal Block to represent
concurrent messages, which are sent or received with the same block number. The set
of Causal Blocks ordered by their block numbers allow us to construct a Block Matrix
BM , as showed in figure 1 to a 6-member process group. It represents all messages
sent/received by the process which owns this particular matrix. In the figure, for example,
the block-numbers of the last messages received from processes p1 and p2, are 4 and 5,
respectively.

Figure 1. The Block Matrix of a 6-member Group Process

Thanks to the FIFO and reliable channel assumptions, once the block matrix in pi

indicates the receipt of a message m with block number m.b from pj , no other messages
from pj with a smaller block number b′ < m.b will be ever received by pi. Hence, the
notion of block completion can be built to determine if a given block contains all related
messages (i.e. no more messages with the same block number are expected) - said then a
complete block. In the example above, blocks 1 and 2 (BM [1] and BM [2]) are complete.

The block completion can be used to provide causal and total order delivery. To
provide total order, after the completion of the block BM [B] is possible to deliver its
messages in a pre-defined order (e.g. according to the sender’s unique identifier). In both
cases, the delivery should occur in the increasing order of block numbers. To guarantee
liveness in block completion, and therefore, in message delivery, each process is provided
with a simple mechanism, called the time-silence, which enables a process to remain
lively during those periods when it is not generating computational messages. The time-
silence mechanism of pi acts as follows. When a block BM [B] is created at pi, it sets
a timeout ts, after that if the process does not sent a message m to contribute to that
completion (m.b ≥ B), a null message timestamped with the largest locally known block
number is sent.

We extend this framework to consider the notion of timely block completion by
giving a time upper bound by which a created causal block will be completed, when the
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system is synchronous 2. The lemma below specifies these upper bounds.
Lemma 3.1. The time bounds for completion of BM[m.b] at pi, as measured by its local
clock are:

• TC1: (ti + ts(m.b) + 2∆max)(1 + ρ), if m was sent by pi

• TC2: (ti + ts(m.b) + 2∆max −∆min)(1 + ρ), if m was received by pi

The Protocol A message m sent to a group reaches all destinations if the sender pro-
cess does not crash during transmission; in case of crash, some destination processes may
not receive m. Hence, when a message is received by a destination process, it can not
be immediately discarded as its retransmission may be required to satisfy the agreement
property; instead, the received message must be stored until it is known that all processes
have received it. Messages that have not been acknowledged by all member processes
are called unstable messages (stable messages, otherwise)3. In the previous version of
the protocol [Macêdo and Freitas 2009a], as soon as a message becomes stable, it is then
discarded from the local storage. For the present version, we require that a message be
super-stable so that the uniform agreement on message delivery property can be guaran-
teed. Therefore, messages are only discarded after being super-stable (being known stable
by all processes).

Uniform Agreement on Message Delivery. To determine when a block is stable, group
members inform in every transmitted message the last complete block (LCB). By col-
lecting all LCB tags available, we can derive the last stable block LSB = min{LCBi},
∀pi ∈ g. Hence, all blocks of a process pi with number equal or less to LSB are stable
to pi. In order to assure that group members deliver the same set of messages and in the
same order with uniform agreement on message delivery, the following conditions must
be satisfied, where m.b is the block number of message m:

• stable-safe1: a received m, is deliverable if BM[m.b]is stable;
• stable-safe2: deliverable messages are delivered in the non-decreasing order of

their block numbers; a fixed pre-determined delivery order is imposed on deliver-
able messages of equal block number.

To achieve liveness in message delivery, the time-silence mechanism must act even
in absence of incomplete blocks. That is, when there is an idle period ts after block com-
pletion a null message is sent in order to transmit the LCB information to all processes.
In these occasions, time-silence messages should not create new blocks.

Timeouts to Block Stability The upper-bounds for block stability of BM[m.b] at pi, as
measured by its local clock are:
Lemma 3.2. The time bounds for stability of BM[m.b] at pi, as measured by it:

• ST1: (ti + 2ts(m.b) + 3∆max)(1 + ρ), if m was sent by pi

• ST2: (ti + 2ts(m.b) + 3∆max −∆min)(1 + ρ), if m was received by pi

We have also exploited the notion of stable blocks to implement joins and leaves
operations. That is, when a process wants to join or leave a group, this information is first

2Actually, it is sufficient that all processes are timely and there exist a spanning tree of timely channels
covering all processes. However, for simplifying our presentation this particular case is not considered.

3The interested reader should refer to [Macêdo et al. 1995] for the details on the detection of stable
messages in the context of Causal Blocks.
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propagated to the group. Once this information (joins or leaves) gets stable the new view
can be installed.

Algorithms Here, we present the algorithms for the uniform agreement version. Algo-
rithm 1 is triggered by a send/receive event of a message m, setting the proper timeouts
in case of block creation, storing the message m in a local buffer and triggering the de-
livery task (Algorithm 2). This task will deliver stable messages according to the delivery
conditions. Suppose that a process pk fails by stop functioning (crashing) and, as a conse-
quence, a timeout expires at pi for a BM[m.b]. In order to proceed with message delivery,
a new membership for g must be established that excludes pk (or any other faulty pro-
cesses). So, to guarantee that all group members engage in the same view installation
procedure, a reliable multicast primitive, denoted rmcast(ChangeViewRequest,B), B =
m.b, is employed to launch the change view procedure (Algorithm 3). This reliable multi-
cast will be received in all functioning processes, which in turn execute the changing view
task (Algorithm 4). Finally, this changing view task uses reliable multicast to disseminate
the LSB value and the set of unstable messages between the functioning processes. So, it
be expected that all unstable messages not yet delivered by the correct processes will be
known. Also, the maximum value gathered of LSB (LSBmax), allows us to infer if which
blocks are stable in a process but are not yet in another. A guard condition is used to wait
until a proper quorum of functioning processes be reached. This quorum considers the
QoS of processes and channels, based on updated information about the sets live, down
and uncertain. Once each process collects its own view of the set of unstable messages
and of the functioning processes and LSBmax, this information will be used with the
adaptive consensus presented in [Gorender et al. 2007] to agree on identical views to be
installed at all group members (thanks to the uniform agreement of consensus). Such a
consensus algorithm makes progress despite distinct views of the QoS of the underlying
system, adapting to the current QoS available (via the sets live, uncertain, and down). At
the end of consensus, the set of unstable messages are stored in local buffer, the LSB
is updated and messages are delivered according to message delivery conditions. As the
decided view may not include a given pi (that fails in sending its unstable set), it might
be terminated (line 12). Finally, a new view is only installed if some process has been re-
moved from the current view (lines 13-14). Otherwise, the missing messages to complete
BM[B] have been recovered and no view change is necessary.

Algorithm 1: Executed by pi on a send/receive event of a message m
if BM[m.b] does not exist then

create BM[m.b]
if pi = m.sender then

set completion timeout TC1 for BM[m.b]
set stability timeout ST1 for BM[m.b]

else
set completion timeout TC2 for BM[m.b]
set stability timeout ST2 for BM[m.b]

end if
end if
store m at a local buffer and signal delivery task (Algorithm 2)
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Algorithm 2: Delivery Task
1: if any causal block gets stable then
2: deliver stable messages according to stable-safe1 and stable-safe2
3: end if
4: updates LCB and LSB and cancel related timeouts for complete or stable

causal blocks

Algorithm 3: Executed by pi on the expiration of a timeout for BM[B]
1: rmcast(ChangeViewRequest,B)

Algorithm 4: Executed by pi on the reception of (ChangeViewRequest,B)
1: if (unstable,B,LSB) was already been sent by pi then
2: exit
3: end if
4: block ordinary delivery at delivery task
5: rmcast(unstable, B,LSB)
6: wait until (∀pj ∈ vk

i : received (unstable,B,LSB) from pj or pj ∈ downi or
FDi(pj) = true) and for majority of uncertain: received (unstable,B,LSB)
from pj

7: let allunstablei be the union of the unstable sets received from all pj and
LSBmax the maximum value of LSB collected.

8: let vk+1
i be set of all pj from which (unstable,B) was received.

9: consensus(B,(vk+1
i , allunstablei, LSBmax))

10: store messages from allunstable not yet received by pi, sets
LSB = LSBmax and apply stable-safe1 and stable-safe2 to blocks that get
stable.

11: if pi /∈ vk+1
i then

12: terminate pi (* pi was removed due to a false suspicion from a pj, i 6= j *)
13: else if vk

i 6= vk+1
i then

14: install the decided view vk+1
i at pi

15: end if
16: signal delivery task (Algorithm 2) for resuming ordinary message delivery

Protocol Correctness To be correct, the protocol must satisfy the properties previously
described. In the following, we formalize and prove the uniform agreement property
for message delivery. The proofs for the remaining properties are omitted due to space
restrictions, but can be easily derived from the system assumptions, the properties of the
causal block framework, and the adaptive consensus.
Theorem 3.1. (Uniform Agreement): If a process delivers a message m in view vr

i , every
correct process pj delivers m in view vr

j .

Proof

Assume that a message m is sent by pi in view vr
i . The message m will be deliv-

ered in pj as soon as BM [m.b] gets stable in pj . Let us first consider the fault free case.
If application messages are not generated to complete BM [m.b], the time-silence mecha-
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nism will sent null messages to BM [m.b] and eventually BM [m.b] complete. Similarly,
after a timeout of block completion, a null message will be sent to transmit the LCB to all
processes. As messages are not lost, all processes will receive the LCB information, so
BM [m.b] get stable and its messages delivered.

Suppose now that pi delivers m and crashes, and as a consequence, m is not de-
livered in a correct process pj . If pi delivered m, it is because BM [m.b] is stable in pi and
therefore complete in all processes (including pj). Thanks to the timeouts for block stabil-
ity, this crash will trigger the reliable multicast to execute the change view task. Because
of the delivery property of the reliable multicast, this message is received by all processes
and the adaptive consensus is eventually executed. Because BM [m.b] is complete in all
processes, m will be present in the proposed view of all processes and will, therefore be
delivered at all functioning processes before installing the new view, including pj (thanks
to the uniform agreement property of consensus).

Theorem 3.1

Finally, the complete version of this paper, including remaining proofs, is available
through our technical report [Macêdo and Freitas 2009b].

4. Simulation and Evaluation

In order to simulate protocols for self-aware distributed systems, it is required that all
possible behaviors in such environments can be expressed, including to provide dis-
tinct QoS for channels and processes, changes in topology, processes and channels. Be-
cause we have not found in the literature a simulation environment with the required
characteristics, we had to develop a new one, which was done in Java. By using our
simulator[Freitas and Macêdo 2009], named HDDSS (after ‘hybrid and dynamic distribu-
ted system simulator’), one can define a system that can be composed by a mix of different
kinds of processes and channels, each of them implementing a distinct fault model, and
allowing the change of component behavior dynamically. For instance, one could define
a set of processes that communicate to each other by asynchronous channels, but forming
a spanning tree of synchronous channels; still, this system could degrade its QoS, so the
spanning tree eventually split, changing dynamically the system properties. In HDDSS,
a fault model is defined according to a chosen probabilistic density function. Moreover,
fault models and timeliness properties can be combined in the definition of the behavior of
channels and processes. For instance, a given system can be made of a sub-set of correct
processes, another sub-set of processes that fail by crashing with certain probability, and,
yet, another sub-set of processes that fail by omission with another probability. The same
can be applied for channels. For instance, a channel can be reliable and characterized
by a Poison density function for message delivery and another one can fail by omission
but with deterministic message delivery delay. Furthermore, during the simulation, one
can replace a channel between two processes by an instance of another channel class -
switching dynamically its behavior. An instance of the main class Simulator defines the
sets of processes and channels. Processes and channels inherit from the classes Agent and
Channel, respectively. Arbitrary topologies are defined at the beginning of the simula-
tion, and can be changed during its evolution. Due to space restrictions, a more detailed
description of the simulation environment is omitted in this paper.
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Also, the simulator allows to provide each process with a set of local variables rep-
resenting sensored information - and these local values can vary over time, according to
the dinamicity of the system. This simulation feature allowed us to simulate the behavior
of the self-aware distributed system we assumed. running protocols.

We evaluated the performance of our protocol with HDDSS in synchronous and
asynchronous cases. This was done by comparison with two classical approaches: Peri-
odic Group Creator [Cristian 1988, Cristian et al. 1995], to a synchronous distributed sys-
tem, and Amoeba’s protocol[Kaashoek and Tanenbaum 1991], to an asynchronous dis-
tributed system. For the sake of notational simplicity, they will be named PGC and
Amoeba, respectively, and our protocol, TimedCB.

Synchronous case In PGC, each process periodically sends a membership checking mes-
sage (period π). The related atomic broadcast algorithm is based on flooding and delivers
messages using synchronized clocks, considering the network maximum delay, the num-
ber k of retransmissions and a maximum difference ε between the synchronized clocks.
In absence of application messages, the TimedCB uses the time-silence mechanism to
guarantee block completion at each period ts. This allow us to monitor the member-
ship in a similar way to PGC. So, in our experiments, we will consider scenarios where
ts = π. For this experiment, we create a synchronous scenario, that could be established
in a QoS enhanced switched Ethernet network, where QoS channels are negotiated in a
process-to-process basis to provide ∆MAX = 15ms. We assume that ∆min = 1ms and
communication delay is much larger than the processing delay. The network topology is
full-connected. We consider that PGC is initialized so that its flooding mechanism tol-
erates just one or two process failures in the sending path (k = 2) and is equipped with
a clock synchronization algorithm. In TimedCB, no synchronization of clocks is needed.
The simulation factors considered are the number of network nodes (5, 15 or 25) and the
periods ts and π (50, 100 or 200ms). In order to simulate the generation of application
messages, each process uses a Bernoulli probabilistic distribution function to decide to
send a message. This was adjusted to provide a transmission rate around 10 messages per
second. Each protocol is simulated with and without crash failures.

An important evaluation metric is the overhead of the protocol (control mes-
sages against the total messages transmitted). Carrying protocol information on appli-
cation messages, TimedCB presents much lower overhead. Even when failures occur and
TimedCB runs consensus, we can see that it is more effective than PGC. For PGC, the
protocol messages are those generated by the Atomic Broadcast, according to the desired
resilience level, and view monitoring PGC’s mechanisms. TimedCB only generates pro-
tocol messages in absence of application messages (time-silence mechanism) or when a
failure occurs (consensus). Analyzing the results (figures 2.a and 2.b), it should be no-
ticed that TimedCB, as expected, presents, in absence of failures, much less overhead than
PGC; it can also be observed that increasing the checking period of both protocols (ts to
TimedCB and π to PGC), decreases, significantly, the respective overhead. When failures
occurs, the TimedCB overhead increases, despite still keeps lower than PGC.

An important evaluation metric is the delay for message delivery, here measured
from the reception of the message at a local buffer up to the corresponding delivery to the
application. Analyzing the results (figures 2.c and 2.d - mean time and the corresponding
standard deviation represented as a thin line), PGC for this resilience (k = 2) presents a
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better efficiency than TimedCB, with similar behavior in absence or presence of failures.
TimedCB presents slightly increased delays in presence of failures, due the cost of running
consensus to deliver non-stable messages.

(a) fault free: overhead (b) with failures: overhead

(c) fault free: delay delivery (d) with failures: delay delivery

Figure 2. simulation results in synchronous scenario

However, we observe that TimedCB delivery delay can be improved for either
smaller checking periods or higher message transmission loads. Moreover, for more re-
silient atomic broadcasts of PGC, the related flooding mechanism will result in much
larger delivery delays (for values of k > 2). For TimedCB, the price is the same (the
consensus price), no matter the number of tolerated failures (from 1 to n− 1). Hence, the
more failures to be tolerated the more advantageous in TimedCB.

Another advantage of the TimedCB is that, in absence of failures, no additional
price will be paid and that is why the protocol presents a low message overhead.

Asynchronous case We simulated an asynchronous scenario without failures and com-
pared our protocol against the uniform-delivery version of the Amoeba’s protocol that
uses a fix sequencer to produce message ordering. In this protocol, a message is first
passed to the sequencer that multicast it to the group. Processes acknowledge to the
sequencer that in turn waits for a quorum of acks before sending a control message allow-
ing delivery. We configured asynchronous channels with exponential behavior (mean =
20ms). In this simulation, we varied the number of network nodes (5, 15 or 25) and the
TimedCB period ts (50 or 100ms). The first column of the figure 3 represents Amoeba’s
data. The second and the third columns represent TimedCB for ts = 50 and ts = 100, re-
spectively. As can be seen in figure 3, Amoeba produces a constant overhead and usually
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larger than TimedCB. The delivery delays for bot protocols are similar. are comparable.

(a) protocol overhead (b) delay delivery

Figure 3. simulation results in asynchronous scenario

5. Final Remarks

TimedCB has been introduced to handle group communication in hybrid systems. With
TimedCB, the same algorithms and information structure can be instantiated in distinct
system models (synchronous, asynchronous, or a hybrid system), which simplifies sys-
tem design. When a pure synchronous system is considered, TimedCB can provide early
delivery, since logical block completion can be achieved before the pessimistic bounds
(obeying known timeouts) hold, and also the expiration of these bounds is an accurate
indication of failures. In an asynchronous system, these bounds trigger failure suspicions.

In our experiments, we can see that the cost of consensus for our solution is paid
only when crashes occur. Protocols based on atomic broadcast (which is equivalent to
consensus [Chandra and Toueg 1996]) will pay an equivalent price for every multicat. For
the asynchronous case, asymmetric approaches [Défago et al. 2004] may be more effi-
cient in terms of the number of messages transmitted. However, these will also need extra
heartbeat messages to detect failures, whereas in TimedCB, failure detection and ordered
message delivery are integrated. The presented approach can be particularly relevant for
applications that require run-time adaptiveness characteristics, such as those running on
networks where previously negotiated QoS cannot always be delivered between processes
and in which the overhead should be minimized during failure-free executions.

There are also hybrid, not necessarily dynamic, system settings and applications
that can benefit from this new approach. Consider for instance, grid clusters intercon-
nected via the Internet, and that tasks are distributed among distinct clusters (i.e. for par-
allel computations). Maintaining a mutually consistent view of the functioning processes
distributed in distinct clusters is an important requirement, for instance, for re-executing
failed tasks when the task coordinator is replicated for improving availability. Such a
functionality can be achieved with the presented approach, where each grid cluster forms
a synchronous partition. However, as connections among the clusters are realized via
TCP/IP, the whole grid system is non-synchronous. We call such hybrid configuration
partitioned synchronous, and elsewhere we presented an algorithm for the related perfect
failure detector [Macêdo and Gorender 2009] - that can be used to manage the down set.
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At last, we observe that the simulated experiments show that the generality of our
solution does not mean a worse performance - since the performance of our protocol can
be compared to well-known solutions for synchronous or asynchronous systems. Hence,
a system designer can also choose the generic approach for the sake of a better software
engineering practice.
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