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Abstract. This paper contains the description and evaluation of the congestion 

control algorithm for rate-based protocols called Homeostatic Congestion 

Control (HCC).  The name homeostatic comes from the use of two mechanisms 

with opposing bias to achieve a dynamic equilibrium. HCC uses timing 

information to infer congestion. Packet pairs are sent periodically to probe the 

network, which may overestimate the available bandwidth. HCC also 

measures available bandwidth measuring the variation of the arrival time 

(jitter) of packets in the sequence of evenly spaced packets given by the rate-

based approach. The error in the current rate measured by the jitter is fed 

back into the control loop. The rate is then balanced between a probing 

mechanism that raises the rate, and an error feedback, which lowers it. HCC 

is evaluated not only on its ability to avoid congestion, but also on its 

convergence to available bandwidth, its stability by itself and in the face of 

competing traffic, and its fairness. 

1.  Background_ 

Congestion control is important for the well-being of the network infrastructure. The 
earliest version of the Transmission Control Protocol did not have congestion control 
[Nagle 1984]. Packets were sent in bursts of one flow control window at a time. 
Although this worked when the network was lightly loaded, it resulted in poor 
throughput as network usage increased. Lost packets caused retransmissions that in turn 
further congested the link, generating more lost packets in a vicious circle, until network 
capacity was completely taken by retransmissions. Congestion control was added to 
TCP by Jacobson [Jacobson 1988], with variations in the algorithm accounting for the 
numerous flavors of TCP. Today, new congestion control algorithms must be designed 
to co-exist with TCP, as it is the transport protocol most widely used in the Internet 
[Qian 2009]. The concept of maintaining the same throughput that TCP would under the 
same network conditions is called TCP-friendliness [Floyd 2000]. 

The main contribution of this paper is the definition of the Homeostatic Congestion 
Control, which is suitable for rate-based protocols. HCC uses packet pairs and inter-
arrival times for bandwidth measurement that set the rate. In contrast, RAP 
[Rejaie1999] uses additive increase, multiplicative decrease (AIMD) for congestion 
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control. AIMD has been shown to converge [Zhang 2004] and it is a good alternative to 
HCC, although a secondary constraint of dividing a flow into multiple paths for use in 
mobile multi-homed hosts led to the use of bandwidth measurements, which can be used 
for both congestion control and for load-balancing.  

The idea of using a pacing algorithm to smooth the burstiness of TCP and for achieving 
higher throughput has been through a revival since TCP Pacing was found wanting [Wei 
INFOCOM 2006]. Protocols such as TCP-AP (Adaptive Pacing) [ElRakabawy 2005] 
[ElRakabawy 2009], tailored for mesh networks, implements rate-based scheduling of 
transmissions within the TCP congestion window. 

The need for achieving higher throughputs due to the introduction of last mile links 
capable of gigabit speeds, which show the limitation of TCP’s current congestion 
control algorithm, has brought a number of new protocols for high speed links, such as 
MulTCP [Nabeshima 2005], which uses multiple simultaneous TCP links to achieve 
high throughput, Cubic-tcp [Ha 2008], which uses a cubic increase function to be able 
to increase bandwidth use more rapidly, and FAST TCP [Wei 2006]. FAST TCP 
advocates the use of delay as a congestion measure, which is an approach similar to 
what is done in HCC and TCP Vegas [Brakmo 1995]. The main argument is that delay 
has a richer information content than the one-bit given by packet loss. However, HCC 
does the processing on the receiver end, to get more reliable one-way estimates, and 
FAST keeps the receiver simple by making congestion estimation at the sender. 

All protocols have to deal with the problem of TCP-friendliness. Some do it directly, 
e.g. the TCP Friendly Rate Control Protocol (TFRCP [Handley 2003]) uses the actual 
analytic formula for TCP throughput to limit the sending rate of the protocol, which can 
guarantee that it will not get more bandwidth than TCP under similar delay conditions. 
Others set their behavior to mimic TCP under loss conditions.  

This paper begins describing the general problem of congestion control in Section 2, 
presents the rate-based mechanisms in Section 3, how congestion can be inferred by the 
algorithm in Section 4, how to adapt to varying network conditions in Section 5, the 
central idea of Homeostatic Control in Section 6, the Homeostatic Congestion Control 
algorithm in Section 7, validation in Section 8 and ends with conclusions in Section 9. 

2.  Bandwidth Estimation, Congestion Detection and Control 

The central question of a congestion control algorithm is how to detect if congestion is 
happening. Due to the reliability of most physical links in the Internet, lost packets can 
be used as a congestion indication. The receiver can infer the sender is overwhelming 
the buffer space of a router in the path when a packet is lost. That loss can then be 
reported back to the sender, which can lower the sending rate to stop the congestion. 
This heuristic is not devoid of problems. The most obvious is that not all packet drops 
are caused by congestion, especially when wireless links without link layer reliability 
are being used. Another problem is the time lag between congestion and prevention. The 
receiver must notice the loss, which normally entails receiving one or more packets after 
the loss event. The information must then be reported back to the sender, which requires 
half an RTT, or the expiration of a timer. An approach to minimize the lag is to use 
Explicit Congestion Notification (ECN [Ramakrishnan 2001]), in which congested 
routers warn hosts that packets are being dropped.  
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Ideally, a sender would know how much data the network is able to transfer, that is, the 
available bandwidth in a network path; however, without reservations, this is almost 
impossible to know beforehand. Although TCP’s congestion control algorithm 
converges, it does not measure the available bandwidth, but instead the sum of network 
bandwidth and routers’ queues. Furthermore, it requires straining the network (by 
causing losses) to find network limits. The elasticity of the routers, designed to accept 
bursty traffic, is in part responsible for the inaccuracy of the measurement, requiring not 
only the incoming packet rate to be larger than the outgoing packet rate, but also this 
situation has to last long enough to fill the router’s outgoing queues. The result is that 
TCP overestimates the path bandwidth, and keeps causing losses even in stable 
conditions. In response, the challenge is to measure the instantaneous available 
bandwidth without causing congestion on the network. 

The first step in designing congestion control algorithms is finding a good congestion 
indicator. Packet loss is used by TCP, but end-to-end statistics are noisy and do not have 
a good correlation to loss type [Biaz 1999], often misclassifying transmission losses as 
congestion losses. Delay measurements are also noisy, but to improve the correlation 
between interarrival time and network conditions, a rate-based transmission mechanism 
can be used. Transmitting packets at regular intervals prevents the burstiness inherent to 
an ack-clocked design, limiting the amount of variance in the transmission of packets 
and creating a flow with characteristics better suited to analysis. 

3.  Rate Based Mechanisms 

For rate based transmission schemes, packets are transmitted at regular intervals, as 
opposed to ack-clocked mechanisms that are inherently bursty because the arrival of an 
ack may trigger the sending of several back-to-back packets.  A flow that uses HCC will 
be a sequence of constant bit rate (CBR) streams, each with a different rate, with 
boundaries between streams occurring when the rate changes. Given no competing 
traffic, if the transmission rate of a rate-based stream is below the capacity of the 
network path, the time dependencies between any two consecutive packets should stay 
constant, excluding boundary effects when the rate is changed.  Moreover, each packet 
after the first encounters the same conditions in each router in the path, so the total 
transmit time between source and destination is constant.  On the other hand, when the 
rate is above the capacity of the bottleneck link, a queue starts forming and the rate seen 
at the receiver becomes the service rate at the bottleneck.  

Therefore, in the case of no intervening traffic, feeding back the rate observed at the 
receiver to the sender, and adjusting the rate at the sender if it is above the rate observed 
at the receiver, can avoid congestion. Of course this adjustment mechanism is only 
needed if the rate is overestimated: if the rate used is below that of the bottleneck link, 
no change will be perceived at the receiver. One way to find the real bottleneck capacity 
is to send packets at the sender’s maximum rate (back-to-back) and measure their 
interarrival time.  The interarrival time is the dispersion caused by the bottleneck link. If 
packets are sent at the rate that produces this dispersion, no further delays will be caused 
at the bottleneck link.  

The above idea is the packet pair method [Keshav 1992]. With no competing traffic, the 
queueing policy at the routers is not important, since it will have no effect on the 
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dynamics of the pair. When there is intervening traffic, fair queueing effectively isolates 
each flow from the effects of burstiness in other traffic and the packet pair method will 
measure the share of bandwidth allocated to the flow. On the other hand, if a FIFO 
policy is used (as is common in many Internet routers), a more complex behavior 
ensues. Two effects come into play: time compression, when there is a queue in a router 
and the first packet gets delayed; and time expansion, when one or more packets get 
between the first and second packets in the packet pair. Both effects can affect the same 
packet pair in different routers along a path, which generates a large dispersal in the 
interarrival values measured at the receiver.  

4.  Congestion Indicators 

When using packet pair to measure the bottleneck bandwidth, time compression and 
time expansion must be filtered out. Unfortunately, as shown by [Dovrolis 2004] the 
distribution of the interarrival times is multi-modal, and the main mode does not 
necessarily correspond to the bottleneck bandwidth. This lack of correspondence 
invalidates statistical filtering of the dispersal values to find the bottleneck capacity 
[Biaz 1998]. Although it is still noisy, the best way to measure timing information is to 
use information gathered at the receiver, because it is being affected only by the 
conditions of the one-way path between sender and receiver, and feed back this 
information to the sender. This introduces a delay between the measurement and its use, 
which makes the information only a hint of the current network conditions due to the 
dynamic nature of the network.  However, if a mechanism to correct the effects of the 
low accuracy is present, the tool will be effective. This is, of course, a limitation of all 
transport protocols: senders always operate on stale data about the network. Therefore, 
protocols need a heuristic to deal with the unknown varying network conditions, and a 
way to correct the failed predictions. 

5.  Congestion Control Mechanisms 

The basic mechanism chosen for bandwidth measurements in HCC is packet dispersion, 
the time difference between arrivals of two packets. A single instance of packet pair 
does not give reliable information. It can underestimate or overestimate the fair share of 
bandwidth. To accurately track available bandwidth, two variants of the packet 
dispersion algorithms are used: the first is the above cited packet pair method, where 
two packets are sent back-to-back, and the second is the regular measurements of jitter, 
the difference between the interarrival times of packets at the receiver and the rate with 
which they were sent. This is more meaningful due to the rate-based sending 
mechanism, where packets are sent at a known regular rate. In both cases, the packet 
dispersion is measured. The first technique has been used extensively to measure the 
minimum capacity link in a path (and not fair share), but requires many repeated 
experiments and statistical analysis ([Liu 2004], [Park 2009]). The second technique has 
also been used for capacity, with similar requirements ([Strauss 2003]). 

The objective of the dual mechanisms is to achieve homeostasis, where two opposite 
forces balance out in a dynamic equilibrium. The operational point which must be 
achieved, called “fair share”, is such that connections with equal characteristics will get 
the same share in the critical routers, and connections with different characteristics (e.g. 
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higher RTT) will not be starved out. The critical routers are those that have low 
available capacity due to actual low link bandwidth and/or heavy traffic.  

The description of the two mechanisms that follows assumes that FIFO queueing is 
being used at the routers. The first mechanism, packet pair, produces a bandwidth 
measurement at the receiver. This measurement goes through a weighted average to 
smooth out transitions and prevent oscillations. A randomizer is used to prevent 
synchronization, which can be a problem for rate based protocols [Aggarwal 2000]. The 
resulting value is sent back to the sender and used as the new rate. If the new rate value 
is below the “fair share”, the interarrival times will tend to be dispersed, and positive 
and negative values of jitter will be received. This happens because the critical router is 
not working at maximum capacity. Sometimes the packet pair will be queued together, 
and the resulting value of jitter will be negative as they arrive at a lower interval than the 
sending rate; sometimes the packets will be separated, and if this time separation is 
greater than the rate the jitter will be positive. However, if the new rate is above the “fair 
share”, there will be a bias towards positive jitter values, because after the critical router 
the packets will tend to be spaced farther apart than they were sent. When a threshold of 
consecutive positive jitter values is seen, it serves as an indication that the current rate 
has overshot the accepted “fair share” rate. The receiver requests a rate decrease, using 
the average value of the jitter as the amount of overshoot in the rate. 

It is important to notice that the “fair share” concept does not guarantee that protocols 
with different congestion control mechanisms will get equal throughput. Even among 
TCP connections, if connections have different RTTs, they will not get the same 
bandwidth on the links they share [Klein 2004]. Connections with lower RTTs will tend 
to get a greater share of bandwidth, everything else being the same. 

5.1   Adapting to dynamic conditions 

As will be shown below, three parameters can be altered to change the behavior of 
protocols using the proposed mechanism. The first is the parameter of the weighted 
average used on the rate calculation after a packet pair is received. The weighting factor 
regulates how much history is kept when a new rate is calculated and can be adjusted so 
the protocol adapts slower or faster to the current network conditions. While it would be 
nice to adapt as fast as possible, every rate adjustment has influence on all traffic on that 
path, including the adapting flow. If the value overshoots the desired operational point, 
it is possible that the next adjustment will try to correct this, possibly creating 
oscillations. The second parameter is in the jitter monitoring mechanism. If the rate 
overshoots the operational point, this mechanism notices positive jitters, and adapts the 
rate. A value proportional to the average jitter is used to correct the rate. The threshold 
(how many consecutive positive jitters) can be adjusted, and how much of the jitter is 
used to correct the rate can be adjusted so that the protocol backs-off faster or slower, 
and more or less in case of errors in the “fair share” rate calculation. The third parameter 
is the amount of back off due to congestion, defining how much the rate has to be 
decreased in case of packet losses. TCP uses a multiplicative decrease, halving its 
window in case of losses. A similar approach is used, and the rate is halved in case of 
losses. Although halving the window and halving the rate are not exactly equal, the 
effect is the same, namely, to back off enough so the queues that have been building up 
in the network have a chance to clear.  

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 397



  

6.  Homeostatic Control 

In this section the details of the congestion control heuristics are given. The name 
homeostatic control comes from the two mechanisms used for achieving balance. The 
heuristic tries to keep balance by overestimating the available bandwidth (due to the bias 
of the packet pair to measure link capacity and not available bandwidth), and correcting 
the estimate by slowing down the rate using jitter averages. 

6.1   Rate based sending mechanism and jitter monitoring 

Using a rate-based sending mechanism means that packets are sent at a certain rate, or 
conversely, that packets are sent with a certain period. Due to flow conservation, the 
number of packets that enter the network must be equal to the number of packets that 
leave the network. Packets may leave the network either by arriving at the destination or 
by being dropped at one of the routers in the path. In a best effort network, packets are 
only dropped because of errors in the header field (caused for example by bit errors in 
transmission) or because there are no buffers available at the router output queue. 

The existence of buffer queues in the routers means that it is possible to violate the 
maximum service rate for a limited time without packet loss. In fact, this is the common 
case for TCP. Large bursts in the network can cause packet loss even if the average 
packet rate is below the service rate of all routers in the path, by causing temporary 
buffer overflows. If evenly spaced packets are sent, this possibility can be ruled out. 

Figure 1: positive and negative jitter 

If the transit times of all packets were the same, they should keep the same timing 
relation with which they were sent. Unfortunately, due to the presence of cross traffic, 
even packets sent at a rate below the maximum service rate of a path will have different 
transit times (packets sent above the maximum service rate will certainly be delayed, 
and if the rate is kept for long enough, some of them will be lost).  Let jitter be defined 
as the difference between the interarrival time of two packets and the period with which 
they were sent.  Using this definition, packets can experience both positive and negative 
jitter.  Negative jitter occurs when the first packet of a pair is delayed, but the second 
packet is not, positive jitter occurs when the first packet is delayed less than the second 
(see Figure 1). Positive and negative jitters should alternate. When a series of positive 
jitters is noticed, the network service rate is being violated. When using homeostatic 
control, two consecutive positive jitters are taken as an indication of rate violation, and 
the period is corrected, given the conditions observed by those two packets.  
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Jitter monitoring prevents the period from straying from the network operational point. 
Unfortunately, this is not enough to guarantee that the network will operate with no 
losses. It is possible that small differences will build up eventually, even when positive 
and negative jitters are perfectly intermingled. The correction mechanism should 
decrease the rate to a point below the operational point, allowing any queues that have 
formed to shrink. This is also a good place to add some randomness. If different rate-
base flows become synchronized, they will increase and decrease their rates in tandem. 
While this may increase network utilization for a short time, if all flows violate the 
network service rate at the same time, they may all experience simultaneous losses. If 
those losses are coupled with a backoff mechanism, then all flows will backoff at the 
same time, leading to a large waste in bandwidth [Klein 2004]. By varying the amount 
of rate decrease using a random function, different flows avoid becoming synchronized, 
at the cost of never achieving full link bandwidth.  

7.  Algorithm 

The HCC algorithm consists of three phases: exponential increase, congestion 
avoidance and congestion control. The objective of the exponential increase phase is to 
converge quickly to the available bandwidth. Packet pairs are sent once every 5 packets. 
Let P0 be the initial period estimated by sending one packet pair and using twice their 
interarrival time as its value. The period in which packets are sent is then adjusted for 
each measurement according to  

Pn+1 = (1 – αααα) * Pn +  αααα * PMeasured, αααα ∈∈∈∈ [0,1].  

The error, or difference between the optimal period and the current period is given by  

Error = ((1 - αααα)n) * (P0-POptimal)  

if the bandwidth is stable. Thus, the error decreases exponentially for a static scenario. 

The congestion avoidance phase is signaled by a sequence of positive jitters, showing 
that the network is getting loaded, and queues are increasing. In that phase, the period is 
corrected by the error between the current period and the optimal period. The magnitude 
of the error is given by the sum of the jitters, because the jitter is caused by the 
difference between what was measured and what packets experienced while in the 
network, yielding a new period Pn+1= Pn + (jitter1+…+jittern)/n, where n is the number 
of measurements and jittern is the difference between the rate the packets were sent and 
the actual inter-arrival time of packets.. 

In the congestion control phase, triggered by congestion related losses, the protocol 
starts multiplicative decrease, doubling the period every RTT if:  

current_time > time_last_loss + RTT + 2* Pn. 

Let Pc be the current period, PMeasured the measured period and POptimal the true optimal 
period. We have 3 cases:  

Too small,  PMeasured < (POptimal – (1–αααα) * Pc) / αααα;  

Sweet spot, POptimal > PMeasured > (POptimal - (1-αααα) * Pc) / αααα;  

Too large,  PMeasured > POptimal 
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If the period is too small, the rate will be too high, and may cause congestion. If the 
period is too large, the protocol will not achieve maximum throughput. If the period 
falls in the sweet spot, the new period will be close to the one that will result in using all 
the available bandwidth of the link. The homeostatic nature of the congestion control 
acts to correct the errors in measurement. Because there is a bias to overestimate 
available bandwidth, normally the measurements will vary between optimal and too 
small. Undersized measurements will generate positive jitters, and jitter correction will 
come into play, slowing down the rate. Oversized measurements are rarer, and only 
temporarily slow down the rate, until the next measurement. The jitter can be only as 
large as the sum of the time a packet can expend at the router queues in a path, giving a 
bound on its maximum absolute value. 

8.  Simulations 

In this section, the results of ns2 simulations are presented. These simulations use the 
HCC-protocol module called XMTP, and were designed to test six aspects of HCC: 
convergence to link bandwidth, convergence to available bandwidth, fairness, stability, 
TCP friendliness, and performance. Previous work ([Magalhaes ICNP 2001], 
[Magalhaes 2001]) presents the description and implementation of a HCC in real world 
environments. The protocols were constrained to low bandwidth links due to low timer 
granularity, such as the then current 2 Mbps wireless links. Recently, timer granularity 
has improved significantly. The current “tickless” design of the Linux kernel allows for 
workable protocols on high bandwidth links, and research has begun on this direction.  

8.1   Convergence to Bottleneck Bandwidth 

This experiment consists of a single flow with no cross traffic going through a 
bottleneck link. The delay of the bottleneck link is changed with each run. The results 
shown are for a single run for each delay. The number of packets that arrive at 
destination in each second is recorded and compared to a TCP New Reno flow. 

TCP New Reno has problems with high delays due to its inherent burstiness. Therefore, 
for a certain bandwidth/delay product, if the queues at the routers are not large enough, 
TCP New Reno cannot achieve the path throughput. At higher RTTs TCP cannot 
achieve the maximum throughput of 124 packets per second, even though the only 
variable changed in each run was the link delay on the bottleneck link. Although scaling 
the queues to the bandwidth delay product of the path would allow TCP to achieve link 
bandwidth for all delays, this was not done to illustrate that XMTP does not heavily load 
the routers in the path due to its rate-based mechanism.  

During the handshake phase of XMTP, an estimate of the bottleneck bandwidth is 
acquired by using the packet pair method. To be conservative, the value obtained is 
doubled, so the initial value of the rate should be below that of the bottleneck link, 
allowing room for refinement as more information is gathered. In this experiment, 
because there is no cross traffic, the value obtained should accurately measure the 
bottleneck bandwidth. Because the value is doubled, the rate will be half of the 
maximum rate available and each subsequent measurement should increase the rate, 
until it converges to the available bandwidth. The rate of increase is directly connected 
to the amount of history kept in each iteration of the probing packet pair. 
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Because XMTP is rate-based, it does not suffer from the problem of overflowing queues 
that prevent TCP from achieving the maximum throughput possible. Although XMTP 
does not achieve the maximum available bandwidth of 124 packets per second, the only 
influence on the link delay is the ramp-up time. Flows with different bottleneck delays 
still achieve the same throughput. The effect of randomness can be seen in Figure 2 as 
the throughput fluctuation during “steady-state.” This random variance was introduced 
to avoid synchronization. 

Figure 2: XMTP and TCP New Reno Throughput 

Figure 2 shows results for XMTP and TCP New Reno for the lowest and highest values 
of RTT. XMTP is not dependant on router queues to compensate for different 
bandwidth/delay products, so it can achieve maximum bandwidth with any delay, only 
limited by its synchronization avoidance mechanism to stay below the link maximum. 
XMTP does not achieve the maximum bandwidth by design. If data were transmitted at 
the maximum available bandwidth, it would be impossible for queues forming at routers 
to drain, because there would be no bandwidth left over. Although counter-intuitive, this 
leads to greater link utilization under most scenarios by avoiding congestion losses. 

8.2   Convergence to available bandwidth 

A non-responsive flow by definition will not change its rate due to congestion. 
Multimedia flows are often non-responsive either because they lack the mechanism to 
measure network conditions, or because they cannot change the source encoding rate. In 
this case, most applications assume that it is better to suffer some losses than to fail in 
transmission, especially because most multimedia streams will degrade gracefully in the 
presence of a small percentage of losses. This set of experiments depicts the reaction of 
an established flow (converged to the bottleneck bandwidth) to a non-responsive flow. 

Under the same scenario, The unresponsive flow uses 1.5Mbps of the 2Mbps bottleneck 
link. The link delay on the bottleneck link is changed and throughput is measured. The 
ideal responsive flow should show an inverted square wave. The objective is to measure 
how long it takes a flow to decrease its throughput, which minimizes losses, and how 
long it takes to regain its previous throughput once the non-responsive flow is gone. 
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XMTP reacts as expected; dropping its throughput in response to the CBR flow and 
returning to the same level after the flow is gone. It takes two seconds for XMTP to 
drop to the new available bandwidth, and two to three seconds to return to the initial 
level once the unresponsive flow is gone, depending on the bottleneck link delay. In 
Figure 3 XMTP and TCP are compared, and it is shown that they have similar behavior. 
TCP is faster than XMTP to regain bandwidth once the CBR flow stops, but XMTP is 
less affected by differences in path delay. 

Figure 3: TCP and XMTP response to a CBR Flow 

8.3   Fairness and Bandwidth sharing 

A congestion control algorithm should be fair in the sense that when multiple flows are 
present, each gets an equal share of bandwidth. This is hard, and even TCP will not be 
fair if conditions are not the same for all flows. If flows with larger RTTs are sharing the 
same link, they tend to get a smaller share because they take longer to recover from 
losses.  In this experiment, simulations are run with five flows, changing the mix from 5 
TCP flows to 5 XMTP flows. The total number of packets that was received for each 
flow is recorded. Then the usage, or total number of packets is calculated, along with the 
fairness. To calculate fairness, we use Jain’s fairness index:(∑i

n xi)
2/ n(∑i

n xi
2). Where n 

is the number of flows and xi is the number of packets for each flow. 

Table 1: Fairness for XMTP & TCP flows 

 Flow 1 Flow 2 Flow 3 Flow 4 Flow 5 Usage Fairness 

5 TCP 6274 6188 6188 6100 6193 30943 0.999 

1XMTP/4TCP 2930 7137 7137 6858 6866 30928 0.935 

2XMTP/3TCP 5480 6541 6541 5998 5935 30495 0.996 

3XMTP/2TCP 5384 5473 5473 6265 5884 28479 0.997 

4XMTP/1TCP 2204 5712 5712 6831 6192 26651 0.916 

5 XMTP 4277 5238 5238 5682 5471 25906 0.990 

The experiment shows XMTP’s behavior in presence of reactive traffic. The questions 
are if XMTP flows will be stable, each flow converging to a fair share of bandwidth 

XMTP & TCP RenoThroughput

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (seconds)

P
a
c
k
e
ts

 p
e
r 

S
e
c
o

n
d Reno 20ms

Reno 100ms

XMTP 20ms

XMTP
100ms

402 Anais



  

without oscillations, and if new flows will be able to get bandwidth from established 
flows. This is compared with the performance of TCP flows under the same conditions.  

A scenario similar to the previous runs was used with five flows, each with its own 
starting and ending node, and shared a bottleneck link. The bandwidth on each link is 
10Mbps, (2Mbps per flow). The delay on the bottleneck link was changed on each run. 

Table 1 shows the results obtained for a 50ms delay on the bottleneck link. Each line 
represents one experiment with darker cells indicating TCP flows (i.e.,. line 1 depicts an 
experiment with 5 TCP flows). For the test with only TCP the fairness is almost 1. In 
line 2, the single XMTP flow is less aggressive than TCP and therefore captures a 
smaller portion of the bandwidth. This demonstrates that XMTP is not interfering with 
TCP, and although it is able to use only half of the bandwidth of the other flows, it is not 
completely stopped by TCP. A better result is obtained on lines 3 and 4, where TCP and 
XMTP share the link equally. In line 5, because one flow did not perform well, both 
usage and fairness dropped, but no flow was starved, and TCP’s performance is not 
hampered. In the case with only XMTP flows, each flow is near 17% below the 
maximum (by design), and though there are differences in the bandwidth experienced by 
each flow, the fairness is still high. In general, TCP performs better at smaller RTTs, 
while at larger RTTs XMTP tends to outperform TCP. In both cases neither is starved. 

Table 2: Fairness for TCP and XMTP flows for different bottleneck delays 

8.4   Stability 

This experiment was designed to test the stability of the congestion control mechanism 
when multiple flows are sharing the same link. A dumbbell-shaped scenario was 
created, where 100 nodes are connected to a single node though links with 1Mbps 
throughput and 10ms delay each. This node is connected to another using a single link 
with a 50Mbps bandwidth (half the aggregated bandwidth) and variable delay. Finally, 
the last node has another 100 nodes connected to it. Each node in one extreme is paired 
with another in the other extreme, and a reliable connection, using either TCP New 
Reno or XMTP is established. The simulation is run for 25 seconds, and the number of 
packets received is recorded. This number is then input into Jain’s Fairness Index. 
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This simulation is parameterized so the following can be varied: the delay of the 
bottleneck link, how many of the hundred flows is TCP or XMTP and the duration of 
the run. Delays of 10ms, 50ms and 100ms were chosen for the bottleneck link, and the 
mix of TCP and XMTP was varied in five steps: 0/100, 25/75, 50/50, 75/25 and 100/0.  

These results are summarized in Table 2. It can be observed that TCP flows are very fair 
to each other, as expected, and XMTP flows are also very fair, because fairness never 
drops below 0.9. But the combined TCP/XMTP flows are not as fair, although the 
fairness never drops below 0.8. Under the conditions chosen, TCP gets more bandwidth. 

8.5   TCP Friendliness 

Fairness is a very close concept to “friendliness”. Both measure the concept of a 
network “good neighbor”. In the last set of experiments, the objective is to investigate 
how TCP and XMTP interact. Two flows, one XMTP and one TCP share the same path, 
and the throughput in packets per second is measured. 

Figure 4: TCP and XMTP Throughput  

(10ms delay) 
Figure 5: TCP and XMTP Throughput 

(50ms delay) 

Figure 4, shows how both flows share a 10ms delay link. With low delay, TCP is more 
aggressive, and tends to get more bandwidth than XMTP. The converse is true for larger 
RTTs. With a 50 ms delay, Figure 5 shows that XMTP dominates. Nevertheless, in both 
cases neither TCP nor XMTP starve out the other. Even with larger delays (not shown), 
when TCP cannot achieve full link bandwidth, XMTP does not starve  it out. 

9.  Conclusions and Future Research 

This paper presented the Homeostatic Congestion Control algorithm, which is suitable 
for congestion control of rate-based transport protocols. HCC is a congestion avoidance 
algorithm, because it can react to changing network conditions before congestion takes 
place, by measuring available bandwidth and dropping the protocol transmission rate if 
it exceeds the perceived available bandwidth of the network. HCC measures available 
bandwidth using two strategies: packet pair and jitter correction. To measure increases 
in available bandwidth, it uses the packet-pair method. This allows it to converge faster 
to available bandwidth than an AIMD algorithm, but may lead to an overestimation of 
available bandwidth. To measure decreases in available bandwidth, and to compensate 
for the overestimation of available bandwidth by the packet-pair measurement, HCC 
corrects the rate by using the error information, which is the difference between the 
expected rate and the inter-arrival times of the packets. By adding this quantity (jitter) to 
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the rate, both congestion avoidance and rate correction are achieved. HCC has an 
additional mechanism if congestion avoidance is not enough and losses still occur. If 
losses are detected, the rate is halved once for each RTT that contains a loss event. 
Finally, HCC uses a novel strategy to avoid synchronized losses, which can affect rate-
based protocols. A randomizer is used to add up to 10% to the value calculated for the 
rate. Because the value is random, different flows will use different values for the rate, 
which will fluctuate slightly, preventing synchronization. The performance of HCC was 
tested using a protocol (XMTP) implemented in ns2. XMTP was shown to converge to 
link bandwidth and respond well to both CBR and TCP flows, regaining bandwidth 
when competing flows are shut off. XMTP was shown to be stable and TCP friendly. 

HCC can be augmented with a loss discrimination heuristic, which was shown in 
another paper [Magalhaes 2003]. One of the weaknesses of HCC is its need of good 
timers. User space implementations of HCC, (described in [Magalhaes ICNP 2001] and 
[Magalhaes 2001]) are limited to the timer resolution offered to user programs. Current 
high resolution timers provide milliseconds resolution [Vasudevan 2009], and enable 
higher throughputs than possible at the time, which motivates further investigation.  
Additionally, HCC could be improved by adapting the probing interval to the path RTT. 
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