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Abstract. This paper presents the project and implementation of JUMP, a 

scheduling policy with process migration support. This new policy unifies 

initial deployment and process migration in a single algorithm, allowing 

decision sharing for the common goal of providing a better performance for 

CPU-bound applications in heterogeneous clusters. The policy is implemented 

over the dynamical and flexible environment AMIGO, adapted in order to 

support process migration. Performance evaluation showed that the new 

policy offers expressive gains in response times when compared to other two 

scheduling policies implemented in AMIGO in almost all scenarios, for 

different applications and different environment load situations. 

1. Introduction 

Distributed computing systems have been widely used as a means for high-performance 

computing, allowing the distributed execution of parallel applications, only possible 

before by means of superscalar, multiprocessor and multicomputer architectures. 

Distributed systems are attractive for presenting lower costs, providing greater 

flexibility and being simpler to build and maintain than specialized architectures. 

 In order to execute a parallel application in a distributed environment, a global 

scheduling policy must be used. This policy operates one or more algorithms that 

distribute parallel tasks among the available nodes of the distributed system. 

 Generally, global scheduling policies try to determine the processing element 

that will execute the process from its creation until its termination. Such policies are 

called initial deployment policies and do not perform preemption. The main objective of 

such policies is to determine which processing elements will be receivers of new tasks, 

in order to achieve load sharing or load balancing through the distributed system 

[Shivaratri et al. 1992]. 

 However, for a number of reasons, the scheduling policy may not be able to 

continually sustain a good load balancing using only initial deployment. The lack of 

information about the distributed system or the application being scheduled, or the 

impossibility to predict future changes in the workload of the processing nodes caused 

by events external to the environment upon which the parallel application is being 

executed, may cause the system to have degraded performance. In these situations, it is 

desirable to move (or migrate) processes during their execution between different 

processing elements of the distributed system in order to achieve a better load 

distribution. 
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 This paper approaches process migration as a means of enabling more efficient 

load balancing in distributed parallel environments, through a new global process 

scheduling policy that unifies the decisions of initial deployment and process migration. 

A brief review of the concepts related to process migration is presented, followed by a 

description of the flexible and dynamic scheduling environment AMIGO [Souza et al. 

1999], upon which the policy was implemented and evaluated. The project and the 

implementation of the scheduling policy JUMP are presented, followed by the results 

obtained through its performance evaluation. Finally, the conclusions are presented. 

2. Process Migration 

The migration of a process consists in the transfer of a significant subset of its state 

between two computers of a distributed system, in order to continue the execution in the 

destination node from the point it was in the originating node . 2000]. 

The migrated process resumes its processing in the destination node with the same state 

it had in the originating node, thus preserving any processing already performed. 

Process migration is a particular case of code mobility [Carzaniga et al. 1997][Fuggetta 

et al. 1998]. 

 In the context of distributed systems, process migration is necessary when the 

system is found in a state where the distribution of the tasks among the nodes is 

inefficient or undesirable, generally degrading its performance. Process migration 

allows modifying the distribution of tasks among the nodes in order to achieve a certain 

goal. Four common goals for process migration can be listed: dynamic load balancing, 

approximating processes from resources accessed, fault tolerance and system 

administration. 

 Load balancing is, probably, the main goal of process migration and also where 

there is a greater amount of research. Even using scheduling policies capable of doing 

load balancing during initial deployment, after some time the system may get to a state 

of unbalance in the load distribution among the nodes. In this case, processes from more 

loaded nodes are migrated to less loaded nodes, making easy the equalization of the 

work load of the distributed parallel environment [ . 2000]. 

 The second goal of process migration is to allow processes to migrate to nodes 

that are nearer or have easier access to data or resources that they use [ . 

2000][Gray et al. 2002][Noguchi et al. 2008]. This is useful in heterogeneous 

distributed systems, where some nodes have physical resources that cannot be moved 

(e.g.: memory, terminal), or which the cost of its access or its transfer through the 

network is greater than the migration of the process (e.g.: a big database). 

 The third goal, fault tolerance, is possible by detecting partial system failures, 

allowing processes to be migrated to other nodes before the general fault, while the 

system is still capable of migration [Sankaran et al. 2005][Wang et al. 2008]. 

 Finally, process migration also allows better system administration, since 

computers can be either powered off or restarted for maintenance at any time without 

losing running processes [ . 2000]. 

 Two components determine how process migration is performed: its policy and 

its mechanism. Generally, these algorithms are implemented independently and in 

distinct levels. The process migration mechanism is implemented in a lower level of the 
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platform, sometimes integrated with the operating system kernel, while the policy is 

implemented in a higher level, as a user process. 

 A process migration policy is basically a load distribution policy, which is 

composed by four components [Shivaratri et al. 1992]: transfer policy, selection policy, 

location policy and information policy. The information policy can be implemented as a 

separate module (called load information management), which is responsible for 

collecting and sharing load information among the nodes of the distributed system 

[ . 2000]. Thus, the process migration policy is implemented in only three 

components: the transfer (or activation) policy, which determines when process 

migration should happen; the selection policy, which determines the processes that 

should be migrated; and the location policy, which determines the destination of the 

processes that are to be migrated [ . 2000]. 

 As soon as it is decided that process migration should happen and it is already 

known which nodes will be partners (chosen by the migration policy), the migration 

mechanism is activated in order to execute the transfer itself. The migration mechanism 

(sometimes called migration algorithm) is responsible for suspending the execution of 

the process in its originating node, transfer its state to the destination node and restarting 

its execution in the destination node. These basic tasks are split in a number of steps, 

which vary in form and order for each migration mechanism. 

 The process migration mechanism may implement one among several existing 

algorithms, known as: eager copy, lazy copy, pre-copy, post-copy and flushing. 

Descriptions of these algorithms are found in [ . 2000][Richmond and 

Hitchens 1997][Douglis and Ousterhout 1997]. 

3. The AMIGO Scheduling Environment 

AMIGO (dynAMical flexIble schedulinG envirOnment) is a flexible and dynamic 

software environment responsible for process scheduling management in distributed 

systems, offering an interface through which message-passing environments or 

distributed applications may request scheduling services. It is an open software tool, 

developed by the Distributed Systems and Concurrent Programming Group of the 

Institute of Mathematical Sciences and Computing during Souza’s doctoral thesis 

[Souza et al. 1999] and complemented by several other research works [Araújo et al. 

1999][Figueiredo et al. 2002][Santos et al. 2001][Campos Jr. 2001][Voorsluys 2006] 

developed in the same research group. 

 Using AMIGO, different scheduling policies can be implemented and 

independently executed, each one serving a distinct group of distributed applications, 

which can be configured either by the user or by the system administrator. 

 The scheduling environment provided by AMIGO consists of three modules: the 

core daemon, the scheduling policies and the clients that request scheduling. The core is 

the server process amigod (AMIGO Daemon), which acts as a bridge between the clients 

and the scheduling policies. Clients are usually message-passing environments such as 

MPI (Message Passing Interface) and PVM (Parallel Virtual Machine) modified to use 

AMIGO to perform scheduling, but may also be the distributed applications themselves. 

 Process scheduling happens in two distinct situations. The first occurs when the 

user or an already-running parallel application requests the creation of new tasks (initial 
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deployment). In this situation, the client (the message-passing environment) requests 

from amigod instructions about where and how the new tasks should be placed among 

the distributed nodes. Such request is relayed to the proper policy, and the response is 

returned to the client, which does the deployment. The second situation happens when a 

preemptive policy, with process migration support, has the initiative of redistributing 

the load of the nodes of the distributed parallel environment. In this situation, the policy 

instructs the client (through amigod) to transfer processes between nodes in order to 

achieve the expected distribution. 

4. The JUMP Migration Policy 

The use of initial deployment and process migration scheduling policies together offers 

better load balancing than using only one of them, since process migration can balance 

the load of the distributed parallel environment in a more dynamic way, through 

preemption [Furquim 2006]. 

 In this paper, it is presented a new preemptive scheduling policy, named JUMP, 

which unifies initial deployment and process migration into a single policy. The policy 

aims for a better load balancing for CPU-bound applications in heterogeneous clusters. 

The name JUMP is a recursive acronym that expands to “Jump Unified Migration 

Policy”. 

 When answering an initial deployment request, the policy tries to make 

decisions that will also benefit future process migration requests. The same happens 

when the policy activates process migration: the decision about which nodes will 

become receivers of migrated processes tries to benefit future initial deployment 

requests. 

 In order to achieve this goal, the policy periodically distributes and collects load 

information from all nodes of the environment and uses a heuristic in order to predict 

load changes for each node until the next load information cycle. For each load 

information cycle, the policy observes the consequences of previously taken decisions 

through the average of the number of running processes and the processing load index. 

 By observing the changes in the processing load index relative to the number of 

running processes for each node, the policy calculates the approximate average weight 

that each process represents in each node. This allows the policy to detect the 

heterogeneity of the cluster during its execution, and thus, is more appropriate for 

heterogeneous environments. 

 JUMP is a distributed scheduling policy and each node of the cluster runs one 

instance of the policy code, which serves requests originated locally. The instances of 

the policy exchange load information among themselves periodically, so that each 

instance knows the load collected by all other instances. 

4.1. Load Information Management 

The load information module of the policy operates in two cycles, a collection cycle and 

an information cycle. The collection cycle happens with a very short period (Tc = 1s, in 

the default policy configuration), and is responsible for collecting and accumulating 

three system metrics. The information cycle happens with a longer period (Ti = 15s), 
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and it is responsible for calculating load indices from the collected metrics and 

distribute load information to the rest of the environment. 

 The load indices produced by this module are the number of executing tasks, the 

processing load and the processor usage. The number of executing tasks represent the 

number of active processes managed by the message-passing environment, considering 

all processes with no regards to their states (running, sleeping and blocked). The 

processing load represents the dispute for processing time through the number of 

threads in the operating system execution queue, normalized by the computational 

power of the node. The processor usage represents the ratio of effective processing time 

of processors. 

 Each instance of the policy broadcasts its local load information to other 

instances through amigod. When load information from a remote instance is received, 

the local instance of the policy calculates the weight of the remote node through an 

exponential moving average of the ratio between the processing load and the number of 

executing tasks. The smoothing factor of the exponential moving average is adjustable 

in the configuration of the policy, being 0.1 its default value. In the situation where the 

number of running tasks is equal to zero, the policy keeps the node weight previously 

calculated. 

4.2. Initial Deployment Component 

The initial deployment component of the policy is activated in response to a process-

scheduling request received from amigod. The policy receives the number of tasks that 

should be created and identifiers of the architecture and the operating system of the 

receiving nodes that should be selected for scheduling. The policy determines the best 

distribution of tasks that satisfies the requirements and returns how many tasks should 

be created in each node of the environment. 

 For each node of the environment, the policy keeps information about its real 

and expected loads. The real load of the node represents the last load value received 

from the remote instance of the policy. The expected load is initially set to the real load, 

but varies as the local instance of the policy makes scheduling decisions, allowing a 

more precise scheduling until the next collection of load information from remote 

instances. 

 Tasks are distributed among the selected nodes in order to balance their loads, 

transferring tasks preferentially to nodes with the lowest loads, reducing the variance 

among the loads of the nodes. In an unbalanced cluster, this makes the load of less-

loaded nodes to approximate to the cluster average load. 

 Load distribution is performed based on the expected load and the calculated 

weight of each node. The receiver of each requested task is selected iteratively, picking 

the node with the least expected load and updating it by summing the calculated weight 

of that node. 

4.3. Process Migration Component 

The process migration component of the policy is responsible for detecting the load 

unbalance over the cluster during the parallel application execution and for initiating the 

migration of one or more processes in order to redistribute the load. 
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 During process migration, only a single node may act as a sender. Although the 

policy is distributed, there is a centralized component that controls which node is 

allowed to act as a sender, so that no two nodes will send processes to other nodes at the 

same time. After the node in greater need for load distribution is selected to be the first 

one to try migration, the algorithm proceeds in the selected node. This mechanism can 

be improved in future versions by using a distributed commit protocol in order to 

remove the dependency in a centralized component and increase fault resilience. 

 The process migration component is activated periodically, every minute. When 

activated, the nodes that are potential senders are selected according with a number of 

conditions. Potential senders must have a processor usage index near or equal to 100%, 

processing load index greater than one, number of executing tasks greater than or equal 

to one and must be able to migrate processes. The most loaded node has priority when 

initiating process migration. 

 Some checking operations are performed as part of the activation policy: if the 

node really is able to participate in the migration, if there is at least one other 

compatible node in the environment for process exchange and if there are local tasks 

that can be migrated. If any of these conditions is not met, the local instance of policy 

resigns its status of sender. 

 After the local instance of the policy decides its node is a sender and has 

permission to initiate migration, the next step is to determine the number of processes 

that should be migrated and select them. The number of processes is determined by the 

difference of the load index of the sender to the cluster load average. Based on the 

weight index of the node, a number of tasks are selected for migration as necessary in 

order to decrease the node load to the cluster average load. The processes selected for 

migration are those with the biggest processing time and smallest time elapsed since its 

creation. In other words, those processes created a short time ago (more likely to have 

caused the load unbalance) and which consumed the most amount of CPU time (in order 

to avoid selecting idle processes, which are unlikely to affect the node load). 

 Finally, receivers for the processes selected for migration are determined. The 

same selection procedure of the initial deployment component is used, but now 

restricted to a specific set of potential receivers, that are those compatible for process 

exchange (has the same architecture and operating system as the sender). 

 Like the initial deployment component, the process migration component uses 

the node weight and expected load indices in order to determine the receivers of 

migrated processes and to keep a prediction of the load changes of the other nodes. 

 After having determined which processes will be migrated and the receivers for 

each process, the local instance of the policy instructs the message-passing environment 

to perform the migration. 

4.4. Implementation 

JUMP was implemented as part of the AMIGO scheduling environment, allowing it to 

be used with any message-passing environment that was adapted for its integration with 

AMIGO. Among the message-passing environments with support to process migration 

available, currently only DPVM [Iskra et al. 2000] has compatibility with AMIGO, 

being the one chosen as development and test environment for the policy. 
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 Other message-passing environments modified for its use integrated to AMIGO 

can also use the JUMP policy. In this case, the process migration component is disabled 

when the environment does not provide such support. This is a consequence of the 

uniform API provided by AMIGO to scheduling policies. Although allowed, this 

situation is not optimal and the user will not benefit from the full potential of JUMP if 

the environment does not provide support for process migration. New message-passing 

environments may use the JUMP policy given they are adapted to work together with 

AMIGO. 

5. Performance Evaluation 

 There are many different ways to perform process scheduling in distributed 

systems, using different tools and scheduling policies. Each policy may be more suitable 

for some specific situations than others. Performance evaluation provides secure 

statements with regards to the practical benefits of some tools and policies when 

compared to others, in specific situations. 

 One way to verify the end user satisfaction with a new configuration is through a 

smaller response time of the distributed application being executed. A smaller response 

time is obtained by optimizing the environment resource usage, which is a direct 

consequence of an effective load balancing. This is the goal of the JUMP scheduling 

policy. In this paper, the response time is considered as the elapsed time from when the 

user launches the distributed parallel application until when the application finishes its 

processing and presents the result back to the user. 

 In this section, the experiments performed in order to evaluate and analyze the 

performance of the JUMP scheduling policy are described. 

5.1. Platform Description 

All experiments were executed using a cluster of four personal computers with IBM/PC 

x86 32-bits architecture. The nodes have non-uniform configuration, with differences in 

processing power and amount of memory. Thus, it is a heterogeneous cluster and was 

chosen because it is the environment where the benefits of process migration are more 

evident. 

 The cluster is composed of a master node, Intel Pentium 4 3.00 GHz, 512 MB of 

memory and 40 GB of hard disk storage. The slave nodes vary in configuration, from an 

Intel Pentium II to an Intel Pentium 4, from 128 MB to 256 MB of RAM and no hard 

disks (using network boot). 

 All computers run the Linux 2.4.26 operating system kernel, with the glibc 

2.3.2-dynckpt system library. This configuration is required by the message-passing 

environment DPVM 2.0. The cluster does not share users and was specially prepared so 

that each node runs only the most fundamental services and thus minimizing the 

influence of external processes on the evaluation. 

 The computers were interconnected by a FastEthernet network (100 Mbps), with 

a switch using the same technology and full-duplex communication. 
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5.2. Applications Used 

Since the scheduling policy developed in this work aims at optimizing the performance 

of applications that demands intensive processing, three such applications were chosen 

for performance evaluation. Even among CPU-bound applications there are different 

execution profiles that may affect the quality of the process scheduling. Three 

applications with different execution profiles were chosen. 

 The first application used is a numerical calculus application which uses the 

composite trapezes method to calculate the result of a definite integral. The application 

demands intensive processing with floating point calculations and a very small amount 

of communication. 

 The second application calculates the product of two very large matrices. Like 

the previous application, this one demands intensive processing with floating point 

calculations, however, this application uses a lot more interprocess communication. 

 The third application performs Mandelbrot set fractal rendering in high 

resolution. This application has an execution characteristic that is very different from 

the other two. Each process of the application is entrusted to rendering a region of the 

fractal. The process estimates the amount of calculations that will be necessary to draw 

that region and, if a threshold is reached, the process creates new tasks in order to 

partition its work. Thus, the application forms a hierarchical structure of distributed 

processes. 

5.3. Experiments Performed 

Many sets of factors could be considered for performance evaluation. Since approaching 

all possible sets would result in a large multidimensional problem, the experiments 

performed tried to cover some of the combinations. 

 The factors considered in the work described in this paper were the scheduling 

policies used, the load level of the system and the applications used. These factors cover 

a large variety of possible uses of the JUMP policy and provide a good general view of 

its performance. 

 The performance of the JUMP policy is compared with other two policies 

implemented in AMIGO: round-robin and DPWP (Dynamic Policy Without 

Preemption) [Araújo et al. 1999]. The round-robin policy represents the trivial 

scheduling used by default by many message-passing environments, such as PVM 

[Geist et al. 1994], DPVM [Iskra et al. 2000] and LAM/MPI [Burns et al. 1994]. DPWP 

is a distributed scheduling policy for processing-intensive applications that uses the 

number of processes in the operating system execution queue as a load index, 

classifying each node according to its load in “idle”, “moderate” and “loaded”, 

distributing tasks to lesser loaded nodes. Both policies don’t support migration. 

 Three different system load situations were considered: idle system, loaded 

system and system with varying load. Each application was executed 30 times in each 

scenario, and the arithmetic average of the response times was calculated. 

 The warm-up technique was used during the experiments in order to allow the 

JUMP policy to detect and learn the heterogeneity of the cluster, providing better 
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results. Therefore, an additional number of executions were performed before the 30 

executions effectively measured in each of the scenarios. 

 The Hypothesis Test [Lehmann and Romano 2005] was used in order to verify 

the statistical significance of the results obtained during the policy performance 

evaluation. The significance level used in the tests was 0.05, and the test used was the 

comparison of the averages of two populations for independent samples. 

 Initially, the JUMP policy was compared with the performance of the other two 

policies in an idle system, that is, the only application running in the cluster was the 

application being evaluated itself. 

 The obtained results are shown in Figure 1. In this scenario, JUMP presents a 

significant performance gain compared to the other two policies. There is an observable 

variance in the response time of the applications for the JUMP policy, which is 

attributed to the synchronism of the applications with the process migration. Process 

migration is activated periodically with a frequency of once per minute. When process 

migration happens, the application can be near the beginning of its execution (thus 

being very benefited with the load balancing in its response time) or near the end (and 

virtually irrelevant or even damaging for its response time due to the migration 

overhead). 

 

Figure 1.Comparing round-robin, DPWP and JUMP policies, idle system. 

 In the second scenario, JUMP was compared to the other two policies in a 

previously loaded system. The same tests performed in the previous experiment, with 

the same parameters for each application, were performed upon this new scenario. 

Before running each test of this experiment, each computer was loaded with three dead 

weight processes, not managed by the message-passing environment. Each process 

keeps constantly demanding processing time until the end of the test. 

 The results obtained in this second experiment are shown in Figure 2. Both 

policies DPWP and JUMP presented better performance than round-robin for all 

applications. The JUMP policy presents a better performance than DPWP for the 

integral and fractal applications. For the matrix application, the JUMP policy does not 

reflect the same gains observed for the other two applications, having an inferior 

performance than for the DPWP policy. 
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 By investigating the behavior of the matrix application when scheduled by each 

of the policies, it was observed that a considerable amount of execution time for each 

process is spent with communication between nodes, when slave processes transmit 

their partitions of the resulting matrix to the master process. The JUMP policy schedule 

the processes in a way to keep the load of nodes well distributed throughout the cluster, 

and as a consequence, slave processes finish their execution with great synchronism, 

causing a peak in network utilization. The DPWP policy, on the other hand, schedule 

the processes in a less rigid way, making their communication more interleaved and not 

causing network usage peaks. 

 

Figure 2.Comparing round-robin, DPWP and JUMP policies, loaded system. 

 Finally, the scheduling policies were compared in a system where the load varies 

during the execution of the parallel application. During the execution of each test of this 

experiment two computers of the platform were loaded with dead weight processes that 

were not managed by the message-passing environment. 

 The results obtained in this experiment, shown in Figure 3, evidence precisely 

the best situation where a scheduling policy with process migration support is most 

efficient. 

 The results provided by DPWP are similar to the ones from round-robin. Since 

the policy does not support preemption, decisions of initial deployment are based on the 

initial state of the cluster (idle), and continue until the end of the application. The JUMP 

policy, on the other hand, presents an excellent performance in all cases, since the 

policy is able to detect the load unbalance and relocate processes in order to equalize it. 
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Figure 3.Comparing round-robin, DPWP and JUMP policies, system with 
varying load. 

6. Conclusion and Future Work 

This paper presented a new process scheduling policy for dynamic load balancing in 

distributed parallel environments with unified support for initial deployment and 

process migration. The policy is designed to be used for CPU-bound applications in 

heterogeneous clusters. 

 The results obtained through performance evaluation showed that the policy 

presents better application response time than the other policies implemented in the 

scheduling environment used, for most of the observed scenarios, with multiple system 

load situations and multiple applications. 

 The results presented in this paper are expected to incite research on other new 

policies with unified initial deployment and process migration mechanisms. For 

example, more generalized policies that also consider memory usage and 

communication in addition to processing load. Other goals to process migration may 

also be explored, like fault tolerance and system administration. 

 Other future work includes porting other process migration policies and 

environments to the same scheduling environment used, enabling the evaluation of 

JUMP against other process migration policies, and performance indices specific to 

such policies. 
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