

JUMP: A Unified Scheduling Policy with Process

Migration

Juliano F. Ravasi
1
, Marcos J. Santana

1
, Regina Helena C. Santana

1

1
Inst. de Ciências Matemáticas e de Computação – Universidade de São Paulo (USP)

Caixa Postal 668 – 13.560-970 – São Carlos – SP – Brazil

{jravasi,mjs,rcs}@icmc.usp.br

Abstract. This paper presents the project and implementation of JUMP, a

scheduling policy with process migration support. This new policy unifies

initial deployment and process migration in a single algorithm, allowing

decision sharing for the common goal of providing a better performance for

CPU-bound applications in heterogeneous clusters. The policy is implemented

over the dynamical and flexible environment AMIGO, adapted in order to

support process migration. Performance evaluation showed that the new

policy offers expressive gains in response times when compared to other two

scheduling policies implemented in AMIGO in almost all scenarios, for

different applications and different environment load situations.

1. Introduction

Distributed computing systems have been widely used as a means for high-performance

computing, allowing the distributed execution of parallel applications, only possible

before by means of superscalar, multiprocessor and multicomputer architectures.

Distributed systems are attractive for presenting lower costs, providing greater

flexibility and being simpler to build and maintain than specialized architectures.

 In order to execute a parallel application in a distributed environment, a global

scheduling policy must be used. This policy operates one or more algorithms that

distribute parallel tasks among the available nodes of the distributed system.

 Generally, global scheduling policies try to determine the processing element

that will execute the process from its creation until its termination. Such policies are

called initial deployment policies and do not perform preemption. The main objective of

such policies is to determine which processing elements will be receivers of new tasks,

in order to achieve load sharing or load balancing through the distributed system

[Shivaratri et al. 1992].

 However, for a number of reasons, the scheduling policy may not be able to

continually sustain a good load balancing using only initial deployment. The lack of

information about the distributed system or the application being scheduled, or the

impossibility to predict future changes in the workload of the processing nodes caused

by events external to the environment upon which the parallel application is being

executed, may cause the system to have degraded performance. In these situations, it is

desirable to move (or migrate) processes during their execution between different

processing elements of the distributed system in order to achieve a better load

distribution.

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 349

 This paper approaches process migration as a means of enabling more efficient

load balancing in distributed parallel environments, through a new global process

scheduling policy that unifies the decisions of initial deployment and process migration.

A brief review of the concepts related to process migration is presented, followed by a

description of the flexible and dynamic scheduling environment AMIGO [Souza et al.

1999], upon which the policy was implemented and evaluated. The project and the

implementation of the scheduling policy JUMP are presented, followed by the results

obtained through its performance evaluation. Finally, the conclusions are presented.

2. Process Migration

The migration of a process consists in the transfer of a significant subset of its state

between two computers of a distributed system, in order to continue the execution in the

destination node from the point it was in the originating node . 2000].

The migrated process resumes its processing in the destination node with the same state

it had in the originating node, thus preserving any processing already performed.

Process migration is a particular case of code mobility [Carzaniga et al. 1997][Fuggetta

et al. 1998].

 In the context of distributed systems, process migration is necessary when the

system is found in a state where the distribution of the tasks among the nodes is

inefficient or undesirable, generally degrading its performance. Process migration

allows modifying the distribution of tasks among the nodes in order to achieve a certain

goal. Four common goals for process migration can be listed: dynamic load balancing,

approximating processes from resources accessed, fault tolerance and system

administration.

 Load balancing is, probably, the main goal of process migration and also where

there is a greater amount of research. Even using scheduling policies capable of doing

load balancing during initial deployment, after some time the system may get to a state

of unbalance in the load distribution among the nodes. In this case, processes from more

loaded nodes are migrated to less loaded nodes, making easy the equalization of the

work load of the distributed parallel environment [. 2000].

 The second goal of process migration is to allow processes to migrate to nodes

that are nearer or have easier access to data or resources that they use [.

2000][Gray et al. 2002][Noguchi et al. 2008]. This is useful in heterogeneous

distributed systems, where some nodes have physical resources that cannot be moved

(e.g.: memory, terminal), or which the cost of its access or its transfer through the

network is greater than the migration of the process (e.g.: a big database).

 The third goal, fault tolerance, is possible by detecting partial system failures,

allowing processes to be migrated to other nodes before the general fault, while the

system is still capable of migration [Sankaran et al. 2005][Wang et al. 2008].

 Finally, process migration also allows better system administration, since

computers can be either powered off or restarted for maintenance at any time without

losing running processes [. 2000].

 Two components determine how process migration is performed: its policy and

its mechanism. Generally, these algorithms are implemented independently and in

distinct levels. The process migration mechanism is implemented in a lower level of the

350 Anais

platform, sometimes integrated with the operating system kernel, while the policy is

implemented in a higher level, as a user process.

 A process migration policy is basically a load distribution policy, which is

composed by four components [Shivaratri et al. 1992]: transfer policy, selection policy,

location policy and information policy. The information policy can be implemented as a

separate module (called load information management), which is responsible for

collecting and sharing load information among the nodes of the distributed system

[. 2000]. Thus, the process migration policy is implemented in only three

components: the transfer (or activation) policy, which determines when process

migration should happen; the selection policy, which determines the processes that

should be migrated; and the location policy, which determines the destination of the

processes that are to be migrated [. 2000].

 As soon as it is decided that process migration should happen and it is already

known which nodes will be partners (chosen by the migration policy), the migration

mechanism is activated in order to execute the transfer itself. The migration mechanism

(sometimes called migration algorithm) is responsible for suspending the execution of

the process in its originating node, transfer its state to the destination node and restarting

its execution in the destination node. These basic tasks are split in a number of steps,

which vary in form and order for each migration mechanism.

 The process migration mechanism may implement one among several existing

algorithms, known as: eager copy, lazy copy, pre-copy, post-copy and flushing.

Descriptions of these algorithms are found in [. 2000][Richmond and

Hitchens 1997][Douglis and Ousterhout 1997].

3. The AMIGO Scheduling Environment

AMIGO (dynAMical flexIble schedulinG envirOnment) is a flexible and dynamic

software environment responsible for process scheduling management in distributed

systems, offering an interface through which message-passing environments or

distributed applications may request scheduling services. It is an open software tool,

developed by the Distributed Systems and Concurrent Programming Group of the

Institute of Mathematical Sciences and Computing during Souza’s doctoral thesis

[Souza et al. 1999] and complemented by several other research works [Araújo et al.

1999][Figueiredo et al. 2002][Santos et al. 2001][Campos Jr. 2001][Voorsluys 2006]

developed in the same research group.

 Using AMIGO, different scheduling policies can be implemented and

independently executed, each one serving a distinct group of distributed applications,

which can be configured either by the user or by the system administrator.

 The scheduling environment provided by AMIGO consists of three modules: the

core daemon, the scheduling policies and the clients that request scheduling. The core is

the server process amigod (AMIGO Daemon), which acts as a bridge between the clients

and the scheduling policies. Clients are usually message-passing environments such as

MPI (Message Passing Interface) and PVM (Parallel Virtual Machine) modified to use

AMIGO to perform scheduling, but may also be the distributed applications themselves.

 Process scheduling happens in two distinct situations. The first occurs when the

user or an already-running parallel application requests the creation of new tasks (initial

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 351

deployment). In this situation, the client (the message-passing environment) requests

from amigod instructions about where and how the new tasks should be placed among

the distributed nodes. Such request is relayed to the proper policy, and the response is

returned to the client, which does the deployment. The second situation happens when a

preemptive policy, with process migration support, has the initiative of redistributing

the load of the nodes of the distributed parallel environment. In this situation, the policy

instructs the client (through amigod) to transfer processes between nodes in order to

achieve the expected distribution.

4. The JUMP Migration Policy

The use of initial deployment and process migration scheduling policies together offers

better load balancing than using only one of them, since process migration can balance

the load of the distributed parallel environment in a more dynamic way, through

preemption [Furquim 2006].

 In this paper, it is presented a new preemptive scheduling policy, named JUMP,

which unifies initial deployment and process migration into a single policy. The policy

aims for a better load balancing for CPU-bound applications in heterogeneous clusters.

The name JUMP is a recursive acronym that expands to “Jump Unified Migration

Policy”.

 When answering an initial deployment request, the policy tries to make

decisions that will also benefit future process migration requests. The same happens

when the policy activates process migration: the decision about which nodes will

become receivers of migrated processes tries to benefit future initial deployment

requests.

 In order to achieve this goal, the policy periodically distributes and collects load

information from all nodes of the environment and uses a heuristic in order to predict

load changes for each node until the next load information cycle. For each load

information cycle, the policy observes the consequences of previously taken decisions

through the average of the number of running processes and the processing load index.

 By observing the changes in the processing load index relative to the number of

running processes for each node, the policy calculates the approximate average weight

that each process represents in each node. This allows the policy to detect the

heterogeneity of the cluster during its execution, and thus, is more appropriate for

heterogeneous environments.

 JUMP is a distributed scheduling policy and each node of the cluster runs one

instance of the policy code, which serves requests originated locally. The instances of

the policy exchange load information among themselves periodically, so that each

instance knows the load collected by all other instances.

4.1. Load Information Management

The load information module of the policy operates in two cycles, a collection cycle and

an information cycle. The collection cycle happens with a very short period (Tc = 1s, in

the default policy configuration), and is responsible for collecting and accumulating

three system metrics. The information cycle happens with a longer period (Ti = 15s),

352 Anais

and it is responsible for calculating load indices from the collected metrics and

distribute load information to the rest of the environment.

 The load indices produced by this module are the number of executing tasks, the

processing load and the processor usage. The number of executing tasks represent the

number of active processes managed by the message-passing environment, considering

all processes with no regards to their states (running, sleeping and blocked). The

processing load represents the dispute for processing time through the number of

threads in the operating system execution queue, normalized by the computational

power of the node. The processor usage represents the ratio of effective processing time

of processors.

 Each instance of the policy broadcasts its local load information to other

instances through amigod. When load information from a remote instance is received,

the local instance of the policy calculates the weight of the remote node through an

exponential moving average of the ratio between the processing load and the number of

executing tasks. The smoothing factor of the exponential moving average is adjustable

in the configuration of the policy, being 0.1 its default value. In the situation where the

number of running tasks is equal to zero, the policy keeps the node weight previously

calculated.

4.2. Initial Deployment Component

The initial deployment component of the policy is activated in response to a process-

scheduling request received from amigod. The policy receives the number of tasks that

should be created and identifiers of the architecture and the operating system of the

receiving nodes that should be selected for scheduling. The policy determines the best

distribution of tasks that satisfies the requirements and returns how many tasks should

be created in each node of the environment.

 For each node of the environment, the policy keeps information about its real

and expected loads. The real load of the node represents the last load value received

from the remote instance of the policy. The expected load is initially set to the real load,

but varies as the local instance of the policy makes scheduling decisions, allowing a

more precise scheduling until the next collection of load information from remote

instances.

 Tasks are distributed among the selected nodes in order to balance their loads,

transferring tasks preferentially to nodes with the lowest loads, reducing the variance

among the loads of the nodes. In an unbalanced cluster, this makes the load of less-

loaded nodes to approximate to the cluster average load.

 Load distribution is performed based on the expected load and the calculated

weight of each node. The receiver of each requested task is selected iteratively, picking

the node with the least expected load and updating it by summing the calculated weight

of that node.

4.3. Process Migration Component

The process migration component of the policy is responsible for detecting the load

unbalance over the cluster during the parallel application execution and for initiating the

migration of one or more processes in order to redistribute the load.

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 353

 During process migration, only a single node may act as a sender. Although the

policy is distributed, there is a centralized component that controls which node is

allowed to act as a sender, so that no two nodes will send processes to other nodes at the

same time. After the node in greater need for load distribution is selected to be the first

one to try migration, the algorithm proceeds in the selected node. This mechanism can

be improved in future versions by using a distributed commit protocol in order to

remove the dependency in a centralized component and increase fault resilience.

 The process migration component is activated periodically, every minute. When

activated, the nodes that are potential senders are selected according with a number of

conditions. Potential senders must have a processor usage index near or equal to 100%,

processing load index greater than one, number of executing tasks greater than or equal

to one and must be able to migrate processes. The most loaded node has priority when

initiating process migration.

 Some checking operations are performed as part of the activation policy: if the

node really is able to participate in the migration, if there is at least one other

compatible node in the environment for process exchange and if there are local tasks

that can be migrated. If any of these conditions is not met, the local instance of policy

resigns its status of sender.

 After the local instance of the policy decides its node is a sender and has

permission to initiate migration, the next step is to determine the number of processes

that should be migrated and select them. The number of processes is determined by the

difference of the load index of the sender to the cluster load average. Based on the

weight index of the node, a number of tasks are selected for migration as necessary in

order to decrease the node load to the cluster average load. The processes selected for

migration are those with the biggest processing time and smallest time elapsed since its

creation. In other words, those processes created a short time ago (more likely to have

caused the load unbalance) and which consumed the most amount of CPU time (in order

to avoid selecting idle processes, which are unlikely to affect the node load).

 Finally, receivers for the processes selected for migration are determined. The

same selection procedure of the initial deployment component is used, but now

restricted to a specific set of potential receivers, that are those compatible for process

exchange (has the same architecture and operating system as the sender).

 Like the initial deployment component, the process migration component uses

the node weight and expected load indices in order to determine the receivers of

migrated processes and to keep a prediction of the load changes of the other nodes.

 After having determined which processes will be migrated and the receivers for

each process, the local instance of the policy instructs the message-passing environment

to perform the migration.

4.4. Implementation

JUMP was implemented as part of the AMIGO scheduling environment, allowing it to

be used with any message-passing environment that was adapted for its integration with

AMIGO. Among the message-passing environments with support to process migration

available, currently only DPVM [Iskra et al. 2000] has compatibility with AMIGO,

being the one chosen as development and test environment for the policy.

354 Anais

 Other message-passing environments modified for its use integrated to AMIGO

can also use the JUMP policy. In this case, the process migration component is disabled

when the environment does not provide such support. This is a consequence of the

uniform API provided by AMIGO to scheduling policies. Although allowed, this

situation is not optimal and the user will not benefit from the full potential of JUMP if

the environment does not provide support for process migration. New message-passing

environments may use the JUMP policy given they are adapted to work together with

AMIGO.

5. Performance Evaluation

 There are many different ways to perform process scheduling in distributed

systems, using different tools and scheduling policies. Each policy may be more suitable

for some specific situations than others. Performance evaluation provides secure

statements with regards to the practical benefits of some tools and policies when

compared to others, in specific situations.

 One way to verify the end user satisfaction with a new configuration is through a

smaller response time of the distributed application being executed. A smaller response

time is obtained by optimizing the environment resource usage, which is a direct

consequence of an effective load balancing. This is the goal of the JUMP scheduling

policy. In this paper, the response time is considered as the elapsed time from when the

user launches the distributed parallel application until when the application finishes its

processing and presents the result back to the user.

 In this section, the experiments performed in order to evaluate and analyze the

performance of the JUMP scheduling policy are described.

5.1. Platform Description

All experiments were executed using a cluster of four personal computers with IBM/PC

x86 32-bits architecture. The nodes have non-uniform configuration, with differences in

processing power and amount of memory. Thus, it is a heterogeneous cluster and was

chosen because it is the environment where the benefits of process migration are more

evident.

 The cluster is composed of a master node, Intel Pentium 4 3.00 GHz, 512 MB of

memory and 40 GB of hard disk storage. The slave nodes vary in configuration, from an

Intel Pentium II to an Intel Pentium 4, from 128 MB to 256 MB of RAM and no hard

disks (using network boot).

 All computers run the Linux 2.4.26 operating system kernel, with the glibc

2.3.2-dynckpt system library. This configuration is required by the message-passing

environment DPVM 2.0. The cluster does not share users and was specially prepared so

that each node runs only the most fundamental services and thus minimizing the

influence of external processes on the evaluation.

 The computers were interconnected by a FastEthernet network (100 Mbps), with

a switch using the same technology and full-duplex communication.

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 355

5.2. Applications Used

Since the scheduling policy developed in this work aims at optimizing the performance

of applications that demands intensive processing, three such applications were chosen

for performance evaluation. Even among CPU-bound applications there are different

execution profiles that may affect the quality of the process scheduling. Three

applications with different execution profiles were chosen.

 The first application used is a numerical calculus application which uses the

composite trapezes method to calculate the result of a definite integral. The application

demands intensive processing with floating point calculations and a very small amount

of communication.

 The second application calculates the product of two very large matrices. Like

the previous application, this one demands intensive processing with floating point

calculations, however, this application uses a lot more interprocess communication.

 The third application performs Mandelbrot set fractal rendering in high

resolution. This application has an execution characteristic that is very different from

the other two. Each process of the application is entrusted to rendering a region of the

fractal. The process estimates the amount of calculations that will be necessary to draw

that region and, if a threshold is reached, the process creates new tasks in order to

partition its work. Thus, the application forms a hierarchical structure of distributed

processes.

5.3. Experiments Performed

Many sets of factors could be considered for performance evaluation. Since approaching

all possible sets would result in a large multidimensional problem, the experiments

performed tried to cover some of the combinations.

 The factors considered in the work described in this paper were the scheduling

policies used, the load level of the system and the applications used. These factors cover

a large variety of possible uses of the JUMP policy and provide a good general view of

its performance.

 The performance of the JUMP policy is compared with other two policies

implemented in AMIGO: round-robin and DPWP (Dynamic Policy Without

Preemption) [Araújo et al. 1999]. The round-robin policy represents the trivial

scheduling used by default by many message-passing environments, such as PVM

[Geist et al. 1994], DPVM [Iskra et al. 2000] and LAM/MPI [Burns et al. 1994]. DPWP

is a distributed scheduling policy for processing-intensive applications that uses the

number of processes in the operating system execution queue as a load index,

classifying each node according to its load in “idle”, “moderate” and “loaded”,

distributing tasks to lesser loaded nodes. Both policies don’t support migration.

 Three different system load situations were considered: idle system, loaded

system and system with varying load. Each application was executed 30 times in each

scenario, and the arithmetic average of the response times was calculated.

 The warm-up technique was used during the experiments in order to allow the

JUMP policy to detect and learn the heterogeneity of the cluster, providing better

356 Anais

results. Therefore, an additional number of executions were performed before the 30

executions effectively measured in each of the scenarios.

 The Hypothesis Test [Lehmann and Romano 2005] was used in order to verify

the statistical significance of the results obtained during the policy performance

evaluation. The significance level used in the tests was 0.05, and the test used was the

comparison of the averages of two populations for independent samples.

 Initially, the JUMP policy was compared with the performance of the other two

policies in an idle system, that is, the only application running in the cluster was the

application being evaluated itself.

 The obtained results are shown in Figure 1. In this scenario, JUMP presents a

significant performance gain compared to the other two policies. There is an observable

variance in the response time of the applications for the JUMP policy, which is

attributed to the synchronism of the applications with the process migration. Process

migration is activated periodically with a frequency of once per minute. When process

migration happens, the application can be near the beginning of its execution (thus

being very benefited with the load balancing in its response time) or near the end (and

virtually irrelevant or even damaging for its response time due to the migration

overhead).

Figure 1.Comparing round-robin, DPWP and JUMP policies, idle system.

 In the second scenario, JUMP was compared to the other two policies in a

previously loaded system. The same tests performed in the previous experiment, with

the same parameters for each application, were performed upon this new scenario.

Before running each test of this experiment, each computer was loaded with three dead

weight processes, not managed by the message-passing environment. Each process

keeps constantly demanding processing time until the end of the test.

 The results obtained in this second experiment are shown in Figure 2. Both

policies DPWP and JUMP presented better performance than round-robin for all

applications. The JUMP policy presents a better performance than DPWP for the

integral and fractal applications. For the matrix application, the JUMP policy does not

reflect the same gains observed for the other two applications, having an inferior

performance than for the DPWP policy.

0

10

20

30

40

50

60

70

80

Integral Matrix Fractal

Ti
m

e
(s

)

RR

DPWP

JUMP

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 357

 By investigating the behavior of the matrix application when scheduled by each

of the policies, it was observed that a considerable amount of execution time for each

process is spent with communication between nodes, when slave processes transmit

their partitions of the resulting matrix to the master process. The JUMP policy schedule

the processes in a way to keep the load of nodes well distributed throughout the cluster,

and as a consequence, slave processes finish their execution with great synchronism,

causing a peak in network utilization. The DPWP policy, on the other hand, schedule

the processes in a less rigid way, making their communication more interleaved and not

causing network usage peaks.

Figure 2.Comparing round-robin, DPWP and JUMP policies, loaded system.

 Finally, the scheduling policies were compared in a system where the load varies

during the execution of the parallel application. During the execution of each test of this

experiment two computers of the platform were loaded with dead weight processes that

were not managed by the message-passing environment.

 The results obtained in this experiment, shown in Figure 3, evidence precisely

the best situation where a scheduling policy with process migration support is most

efficient.

 The results provided by DPWP are similar to the ones from round-robin. Since

the policy does not support preemption, decisions of initial deployment are based on the

initial state of the cluster (idle), and continue until the end of the application. The JUMP

policy, on the other hand, presents an excellent performance in all cases, since the

policy is able to detect the load unbalance and relocate processes in order to equalize it.

0

20

40

60

80

100

120

Integral Matrix Fractal

Ti
m

e
(s

)

RR

DPWP

JUMP

358 Anais

Figure 3.Comparing round-robin, DPWP and JUMP policies, system with
varying load.

6. Conclusion and Future Work

This paper presented a new process scheduling policy for dynamic load balancing in

distributed parallel environments with unified support for initial deployment and

process migration. The policy is designed to be used for CPU-bound applications in

heterogeneous clusters.

 The results obtained through performance evaluation showed that the policy

presents better application response time than the other policies implemented in the

scheduling environment used, for most of the observed scenarios, with multiple system

load situations and multiple applications.

 The results presented in this paper are expected to incite research on other new

policies with unified initial deployment and process migration mechanisms. For

example, more generalized policies that also consider memory usage and

communication in addition to processing load. Other goals to process migration may

also be explored, like fault tolerance and system administration.

 Other future work includes porting other process migration policies and

environments to the same scheduling environment used, enabling the evaluation of

JUMP against other process migration policies, and performance indices specific to

such policies.

Acknowledgments

The authors acknowledge the National Council for Scientific and Technological

Development (CNPq), for the financial support that allowed the production of this work,

as well to FAPESP and to CAPES for the support provided to works developed by the

Distributed Systems and Concurrent Programming Group from ICMC-USP.

References

Araújo, A. P. F., Santana, M. J., Santana, R. H. C. and Souza, P. S. L. (1999) “DPWP –

a new load balancing algorithm”. 5
th

 Intl. Conf. Information Systems Analysis and

Synthesis – ISAS’99, Orlando, U.S.A.

0

20

40

60

80

100

120

Integral Matrix Fractal

Ti
m

e
(s

)

RR

DPWP

JUMP

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 359

Burns, G., Daoud, R. and Vaigl, J. (1994) “LAM: an open cluster environment for

MPI”, Proc. Supercomputing Symposium. pp. 379-386.

Campos Jr., A. (2001) “Development of a graphical interface for a scheduling

environment” (orig.: “Desenvolvimento de uma interface gráfica para um ambiente

de escalonamento”). University of São Paulo, São Carlos.

Carzaniga, A., Picco, G. P., and Vigna, G. (1997) “Designing distributed applications

with mobile code paradigms”. Proc. 19
th

 Intl. Conf. Software Engineering – ICSE'97,

pp. 22-31, ACM Presss.

Douglis, F. and Ousterhout J. (1991) “Transparent process migration: design

alternatives and the Sprite implementation”, Software - Practice and Experience, vol.

21, no. 8, pp. 757-785.

Figueiredo, T. C.; Santana, M. J.; Santana, R. H. C.; Souza, P. S. L. (2002)

“Improvements on the Performance of LAM/MPI Applications: The use of the

Amigo Environment for Efficient Process Scheduling” (orig.: “Melhorias no

Desempenho de Aplicações LAM/MPI: Uso do Ambiente Amigo para o

Escalonamento Eficiente de Processos”). WPerformance, Florianópolis, 2002. v. 1.

pp. 1358-1368.

Fuggetta, A., Picco, G. P. and Vigna G. (1998) “Understanding code mobility”. IEEE

Trans. Software Engineering, vol. 24, no. 5, pp. 342-361.

Furquim, G. A. (2006) “Load balancing of SPMD applications in distributed

computational systems” (orig.: “Balanceamento de cargas de aplicações SPMD em

sistemas computacionais distribuídos”). University of São Paulo, São Carlos.

Available at: <http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18072006-

173002/>

Geist, A., Beguelin, A., Dongarra, J. J., Jiang, W., Manchek, R. and Sunderam, V.

(1994) “PVM: parallel virtual machine. A Users’ Guide and Tutorial for Networked

Parallel Computing.”. MIT Press, Cambridge, Massachusetts.

Gray, R. S., Cybenko, G., Kotz, D., Peterson, R. A. and Rus, D. (2002) “D'Agents:

applications and performance of a mobile-agent system”. Software - Practice and

Experience, vol. 32, no. 6, pp. 543-573.

Iskra, K. A., Hendrikse, Z. W., Van Albada, G. D., Overeinder, B. J. and Sloot, P. M. A.

(2000) “Dynamic migration of PVM tasks”. Proc. Sixth Annual Conf. of the

Advanced School for Computing and Imaging, pp. 206-212.

Lehmann E. L. and Romano J. P. (2005) “Testing statistical hypotheses”. ISBN

0387988645.

, D. S., Douglis, F., Paindaveine, Y., Wheeler, R. and Zhou, S. (2000) “Process

migration”, ACM Computing Surveys, vol. 32, no. 3, pp. 241-299.

Noguchi, K., Dillencourt, M. B. and Bic, L. F. (2008) “Efficient global pointers with

spontaneous process migration”. 16
th

 Euromicro Conf. Parallel, Distributed and

Network-Based Processing – PDP 2008, pp. 87-94.

Richmond, M. and Hitchens, M. (1997) “A new process migration algorithm”, ACM

SIGOPS Operating Systems Review, vol. 31, pp. 31-42.

360 Anais

http://lattes.cnpq.br/5888897744222998

Sankaran, S., Squyres, J. M., Barrett, B., Lumsdaine, A., Duell, J., Hargrove P. and

Roman E. (2005) “The LAM/MPI checkpoint/restart framework: system-initiated

checkpointing”. Intl. J. of High Performance Computing Applications, vol. 19, no. 4,

pp. 479-493.

Santos, R. R.; Santana, M. J. (2001) “Parallel application scheduling: AMIGO-CORBA

interface” (orig.: “Escalonamento de aplicações paralelas: interface AMIGO-

CORBA”). Workshop de Teses e Dissertações Defendidas, 2001. University of São

Paulo, São Carlos.

Shivaratri, N. G., Krueger, P. and Singhal, M. (1992) “Load distributing for locally

distributed systems”. IEEE Computer, vol. 25, no. 12, pp. 33-44.

Souza, P. S. L., Santana, M. J. and Santana, R. H. C. (1999) “AMIGO – a dynamical

flexible scheduling environment”, 5
th

 International Conf. Information Systems

Analysis and Synthesis – ISAS’99, Orlando.

Voorsluys, B. L. (2006) “Influences of scheduling policies on the performance of

distributed simulations” (orig.: “Influências de políticas de escalonamento no

desempenho de simulações distribuídas”). University of São Paulo, São Carlos.

Available at: <http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092006-

162607/>

Wang, C., Mueller, F., Engelmann, C. and Scott, S. L. (2008) “Proactive process-level

live migration in HPC environments”. Proc. 2008 ACM/IEEE Conf. on

Supercomputing.

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 361

