
An Event-based Component Model for Wireless Sensor
Networks: a Case Study for River Monitoring

Jó Ueyama1, Daniel Roy Hughes1,2,3, Nelson Matthys3, Wouter Horr é3,
Wouter Joosen3, Christophe Huygens3, Sam Michiels3

1Instituto de Ciências Matemáticas e de Computação (ICMC)
Universidade de São Paulo (USP)

Caixa Postal 668 – 13560-970 – São Carlos – SP – Brazil

2Computer Science and Software Engineering,
Xi’an Jiaotong-Liverpool University

Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China

3Department of Computer Science, Katholieke Universiteit Leuven,
Leuven, 3000, Belgium

joueyama@icmc.usp.br, Daniel.Hughes@xjtlu.edu.cn

{nelson.mathys, wouter.horre}@cs.kuleuven.be

{wouter.joosen, christophe.huygens, sam.michiels}@cs.kuleuven.be

Abstract. This paper examines an event-based component model for wireless
sensor networks called LooCI (Loosely-coupled Component Infrastructure) and
discusses an application of LooCI for river monitoring in creeks that flow through
São Carlos. Our sensor network application which is based on LooCI monitors
flood, pollution and human tampering and warns potential stakeholders when-
ever they are at risk (e.g. of floods). Our pollution monitoring system is used
to inspect rivers and issues a warning whenever the condition of water reaches
an unacceptable level. In addition, our depth sensor monitors rivers and is
used to predict potential floodings. Finally, our three dimensional accelerome-
ter detects any improper vibration caused by tampering with the deployed node.
Our component model for sensor networking environments has a novel loosely-
coupled binding model which is particularly designed to support intermittent
connections between the components. This reflects the nature of wireless sensor
networks that are often subject to unreliable networking.

1. Introduction

Wireless sensor networks (hereafter, WSNs) are composed of tiny embedded computers
known as “motes”. A mote will have an embedded CPU, low power wireless networking
and simple sensors. WSN is been increasingly employed in a large number of applications
including habitat monitoring, flood prediction, disaster management, military intelligence
and surveillance. As they are normally resource constrained devices, WSNs often require
lightweight and reconfigurable platforms. This is because reconfigurable platforms often
allow systems to deploy only those functionalities that are required. There are numerous
lightweight platforms to program WSNs such as OpenCom [2], RUNES [1], NesC [3].
The main problem with them is that they have a steep learning curve and each of them

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 997

relies on a different approach (e.g. component-based, active-messages, etc.). In addition,
most of them are based on a RPC (Remote Procedure Call) type of binding, which is not
suited to the WSN software domain as they do not reflect the dynamic features of WSN
environments. This is because connections in WSN environments are often intermittent
and thus, RPC-based bindings do not scale well with them; as well as this, they may
require developers to deal with a complex fault-tolerant RPC-based binding.

This paper examines a component model tool (LooCI – Loosely Coupled Compo-
nent Infrastructure) [4] for WSNs and also explores a case study which is implemented to
illustrate river monitoring in creeks that flows through São Carlos – SP. The aim is to give
a brief description of LooCI and show the implementation of LooCI in river monitoring
on SunSPOT sensor platforms1. Both implementations (i.e. of the component model and
the case study) can be downloaded athttp://code.google.com/p/looci/. The
blog athttp://sp-river.blogspot.com/ provides rich material for our case
study work.

The remainder of this paper is structured as follows: Section 2 summarizes the
existing component models and outlines the benefits of our tool. Subsequently, we give
details of our LooCI component model for WSNs in Section 3. Following this, Section
4 details an application of LooCI to a WSN-based river monitoring system in creeks
running through São Carlos (São Paulo). Finally, Section 6 wraps up this paper with
some concluding remarks.

2. Existing Component Models for WSNs and their Limitations

Run-time reconfigurable component models address many critical problems encountered
in WSN environments, which have limited resources, are highly dynamic and, as they
are expected to operate unattended for long periods of time, must evolve to meet chang-
ing application requirements. In our view, component-based approach can reduce these
problems, as they can naturally deal with:

• Dynamism. Sensor networks are highly dynamic. Component-based reconfigura-
tion offers adaptation mechanisms to handle this dynamism (e.g. by only deploy-
ing required functionalities at runtime).

• Evolution. As application requirements change over time, component based ap-
proaches allow systems to evolve through the deployment of new components.

The Loosely-coupled Component Infrastructure (LooCI) [4] is designed to support
embedded Java ME (micro edition) platforms such as the SunSPOT or Java ME smart-
phones. LooCI comprises an easy-to-use component model and a simple yet extensible
networking framework. Each LooCI node is connected via a common event-bus com-
munication substrate. Like other embedded component platforms, such as RUNES [1] or
OpenCOM [2], LooCI components support run-time reconfiguration, concrete interface
definitions, introspection and support for the re-wiring of bindings.

Unlike OpenCOM or RUNES, LooCI components are indirectly bound over the
event bus. Thus, all LooCI components define their interfaces as the set of LooCI events
that they publish. The receptacles of a LooCI component can be defined in a similar way
to the events which they subscribe. Each LooCI event has a globally unique identifier

1www.sunspotworld.com

998 Anais

which classifies the event type in terms of a global descriptive hierarchy. In our view, a
loosely-bound component model such as LooCI is an excellent fit with adaptive resource
management. As the LooCI binding model is inherently indirect, operating over an event
bus, it is possible for a service manager to modify bindings based upon execution context
in a manner that is transparent to the upper layers. The fact that binding modification is
transparent, makes it easier for us to separate the concerns of resource management and
application functionality. This allows end-users to specify the services they require and
WSN administrators to tailor system behavior without the need to implement new com-
ponents. The LooCI event bus also provides a common point of interception to support
the gathering of contextual data.

3. The LooCI Component-based Programming Tool

Further details are given here of the implementation aspects of LooCI showing how LooCI
developers deal with the event model (e.g. creating events). We also provide an overview
of the component model and component types that are supported by LooCI in Section
3.2. It should be noted that the implementation described in this section is particularly de-
signed to run on SunSPOT sensor platforms. However, given that LooCI is a generic form
of technology, it can be adopted to run on a variety of platforms. This implementation is
compatible with SunSPOT SDK v5.0 Red (090706).

3.1. The Event System

Events are created in two different ways, either by a component wanting to publish an
event through the Event Manager or by the Event Manager itself when it receives an
event via the radio. In the latter case, the Event Manager recreates the event from the
message’s payload and dispatches it to the subscribed components. This is handled by the
Event Manager and should not be a concern of the application developer. In the former
case however, the application developer has to create the event himself. This can be done
in the following manner.

PayloadBuilder payload = new PayloadBuilder();
payload.addInteger(lightSensor.getAverageValue());
Event event = new Event(EventTypes.LIGHT_READING,

payload.getPayload());
publishEvent(event);

The PayloadBuilder class is a utility class used to create event payloads. The
construction of an event payload is as follows:

of elements length of element 1 ... length of elementn element 1 ... elementn

An element can be a String, an integer or a byte and these can be stored in the
payload by using the appropriate add-methods. The PayloadBuilder is responsible for
filling in the specific fields of the payload.

Once the payload is created, an event can be instantiated. This is done by calling
the following Event constructor:

public Event(byte type, byte[] payload) { ... }

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 999

The first parameter defines the event type and can be chosen from the EventTypes
class. The second parameter is the payload that was previously created. These two pa-
rameters are the only values which go on the wire when an event is transmitted. However,
the following additional flags can be set for events by a user.

• critical: this declares that the event should be transmitted by using a reliable trans-
port protocol

• remote address: this represents the address of the specific remote node which this
event should be sent to.

As these flags are optional, the respective setters have to be explicitly called on
the event to set them.

The event system creates a distributed “Event Bus” to which all the LooCI com-
ponents are connected. A per-node instance of the LooCI Event Manager implements
a simple topic-based publish-subscribe event model wherein events are disseminated to
subscribers based upon their type. For example, a software element may subscribe to
events of type “TEMPERATURE” (created by the above-mentioned operations) and may
then be wired to a component at a given network location (local, a remote node or a remote
group of nodes) that produces these events. The interface to the event bus is simple and
lightweight, however, when combined with the LooCIs global, hierarchical type system,
the event manager allows for rich modeling of interactions between the nodes.

3.2. The LooCI Component Model

Two types of components are implemented in the SunSPOT version of LooCI, both rely-
ing heavily on the Isolates provided by the SunSPOT SDK. Isolates are process-like units
of computation which are isolated from other isolates. The two types of components are
macro- and microcomponents.

• Macrocomponents each run in a separate child isolate and communicate with the
LooCI runtime middleware in the master isolate via II-RPC (Inter Isolate-Remote
Procedure Call). They can execute multiple threads and use utility libraries.

• Microcomponents are finer-grained components which run alongside the LooCI
runtime in the master isolate. They must be single threaded and self-contained,
and not use any utility libraries.

Once they are deployed and initialized, both macro and microcomponents are con-
trolled (started, stopped, put into quiescent mode) by the Reconfiguration Engine. They
can be in 3 states:

• 0 = stopped. The component is stopped, meaning unsubscribed to any events and
unregistered at the Reconfiguration Engine.

• 1 = running. The component is running, meaning subscribed to certain events,
registered at the Reconfiguration Engine and providing some functionality.

• 2 = quiescent. This provides a safe state for reconfiguration (e.g. suspending I/O),
meaning unsubscribed to any events.

Components can currently only be deployed, undeployed and initially started by
the action executor (via ant scripts on the command line or the Network Manager). Wire,

1000 Anais

unwire, make quiescent, resume and stop however can be executed using a Reconfigura-
tion (see the next section for further information on this). Starting a component for the
1 first time should be done using either the command line or the Network Manager as it
requires the isolate to be initiated, once it is then made quiescent it can be restarted by
sending a COMPONENTSTART event.

Furthermore, every component has a component ID. By default this is Component-
Types.TESTAPPLICATION which translates to 0 but it is expected that every compo-
nent implementation overrides the getComponentID() method and thus providing a more
meaningful id.

Components can communicate with each other and the LooCI runtime via the
Event Manager. The interfaces which components provide and require are defined by
publishing and subscribing to certain event types.

4. A WSN-based River Monitoring System Using LooCI

There will be now an examination of an application of LooCI to a river monitoring system
in the network of creeks that flows through São Carlos (São Paulo). In this application,
WSN is deployed to measure the water depth and pollution levels of the creeks. In par-
ticular, we will investigate how new software and hardware technologies can be used to
(1) improve the accuracy of flood warning forecasts, (2) support the designing of better
environmental models and (3) respond effectively to flood-based events.

Details will first be given of the hardware prototype before we address the software
aspects of our platform. It should be noted that our sensor network platform is called
REDE which acronym of “REde de sensores paraDetecção deEnchentes”. From now
on, our platform will be referred to simply as REDE.

4.1. Hardware Components

4.1.1. Overview

Figure 1 shows a complete hardware prototype of our monitoring system. The prototype
is based on SunSPOT; SunSPOT is particularly well suited to the rapid prototyping of
sensor network applications as it runs standard Java ME (like many cell phones) and
offers plenty of computational resources. The SunSPOT runs the LooCI tool which was
described above.

After integrating the SunSPOTs with solar panels, batteries, depth and pollution
sensors, the entire package was mounted in a weather-proof case and deployed on the
creeks of São Carlos. The solar panels feed a large (12V, 7AH) reservoir battery, which
in turn feeds the SunSPOT lithium-ion battery and this process maintains a continuous
operation without the need for battery replacement. The deployed REDE mote is shown
in Figure 1.

4.1.2. Use of Sensors

A vented-gauge hydrostatic pressure sensor is used to measure the water depth. Using
this sensor, software components provide warnings when the water level approaches that

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 1001

of the river-bank. in addition, conductivity-based pollution sensors are used by software
computers to issue a warning whenever the pollution of the river is reaching an unac-
ceptable level. We use an off-the-shelf conductivity sensor for industrial applications that
provides a voltage output in the range of 1V to 5V that varies linearly with the level of
conductivity. Finally, a three dimensional accelerometer is used by software components
to detect human tampering and vandalism. The detection of vandalism and pollution are
particularly beneficial in urban rivers such as the Tietê, which runs through densely pop-
ulated areas.

solar panels

Sun SPOT (mote+temperature, light and

−+

12V Battery

vibration sensors)

pressure
conductivity−based

pressure and pollution sensors are kept immersed in the river

three sensors: temperarature, light and viabration sensors
this case contains a battery, SunSPOT mote along with

pollution sensor
sensor

Figure 1. Our hardware prototype of the REDE node

Our platform has been built and an evaluation of REDE carried out at two creeks
in the city of São Carlos. The deployment site is given in Figure 2, which shows two
creeks and a tributary. Sensors were deployed before and after the confluence of the two
creeks so that the relationship between the degree of pollution and the water level in each
creek could be investigated. The base station (represented as BS) receives all the data
from the deployed sensors, and acts as a data-logger and transmitting sensor readings
back to the lab using 802.11b. Each REDE mote sensor transmits data to the base station
at an interval of five minutes, which is the maximum sampling frequency recommended
by our Environmental Science partners.

Figure 2. Map of the deployment site in S ão Carlos-SP. Deployment locations:
BS = Base Station, C1 = Creek 1, C2 = Creek2, T1 = Tributary

1002 Anais

4.2. The REDE Software Platform

The Loosely-coupled Component Infrastructure (LooCI) is a component model for Wire-
less Sensor Networks as mentioned earlier. LooCI allows for the creation of generic
units of software functionality, known as “components” that communicate over an “event
bus”. By composing together generic components (e.g. a depth sensing component, a
flow sensing component and a logging component), application developers can quickly
develop rich application functionality (e.g. a flood monitoring application).

Our river monitoring application is implemented in four distinct modules: 1) Vi-
bration module; 2) Depth sensor module; 3) Conductivity module; and finally the backend
module that runs on the base station acting as a data-logger. Figure 3 shows our backend
application running on the base station. Such an application logs data sent by pollution,
depth and accelerometer sensors; it then updates that information on each textbox of the
GUI. We constructed our application using NetBeans IDE with Java Sun 1.6 compiler
toolkit.

Figure 3. Our river monitoring application demo

5. Presentation Plans and Ongoing Work
This section outlines a tentative plan for the presentation of both the WSN component-
based building technology and the application developed to validate the proposed tool.

The application itself that is based on LooCI is entirely implemented and has been
demonstrated in seminars such as the one that took place at INPE (Instituto Nacional de
Pesquisas Espaciais) recently. A project is now under construction to replicate this tech-
nology and deploy it along the Tietê river in São Paulo. The purpose of this is primarily to
monitor potential pollution and flood hazards and provide people with a warning when-
ever they are at risk. With regard to the SBRC’s tools session, our aim is to concentrate
on three key aspects:

• REDE Hardware Platform. The complete hardware platform can be presented at
the SBRC’s tool session. This includes the SunSPOT microprocessor which is
connected to the conductivity, depth and vibration sensors. The REDE kit also
includes two solar panels that feeds the battery. Both SunSPOT and the battery
are placed inside the weather-proof case as shown in Figure 1.

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 1003

• LooCI Component Model. LooCI represents the underlying technology which en-
ables us to construct lightweight runtime reconfigurable WSN applications. Our
technology is based on component approach, which fosters modularity and more
importantly, helps us to ensure that the application deploys components that are
tailored to the target needs. The above-mentioned LooCI website includes a tuto-
rial that can be exercised during the tool session.

• River Monitoring Application-based on LooCI. The last part concerns the presen-
tation of the application of LooCI to constructing a real-world application scenario
showing the benefits of our tool to the WSN domains. For this, we will show our
river monitoring application running on a SunSPOT along with the conductivity,
depth and vibration sensors.

6. Conclusions

This paper has provided an outline of LooCI – our tool for constructing runtime recon-
figurable component-based applications to the domain of WSNs. We have also exam-
ined an application that adopted LooCI for building a WSN-based river monitoring sys-
tem at São Carlos-SP. Unlike most of the existing models, our component model (i.e.
LooCI) has an event-based binding type, which we argue reflects the nature of the WSN
applications more closely. In WSNs, the connections between the nodes tend to be in-
termittent and thus, technologies should be able to handle unreliable environments. In
SBRC’s tools session, we plan to cover three aspects of our research: (i) the REDE hard-
ware prototype, (ii) the LooCI component technology; (iii) a WSN-based river monitor-
ing application written in LooCI. A general idea of our work can be found athttp:
//code.google.com/p/looci/ andhttp://sp-river.blogspot.com/.

Acknowledgements

Dr. Jó Ueyama and Dr. Daniel Hughes would like to thank FAPESP (Proc. 2009/01881-
5 and 2008/05346-4) and CNPq (Proc. 474803/2009) for funding this research project.
Wouter Horré is a PhD fellow of the Research Foundation - Flanders (FWO).

References

[1] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. Picco, and S. Zachariadis. A Reconfig-
urable Component-based Middleware for Networked Embedded Systems.Interna-
tional Journal of Wireless Information Networks, 14(2):149–162, June 2007.

[2] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and T. Sivaharan.
A Generic Component Model for Building Systems Software.ACM Transaction on
Computer Systems, 26(1), February 2008.

[3] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language:
A holistic approach to networked embedded systems. InProgramming Language
Design and Implementation, ACM SIGPLAN, 2003.

[4] D. Hughes, K. Thoelen, W. Horré, N. Matthys, S. Michiels, C. Huygens, and W. Joosen.
LooCI: A Loosely-coupled Component Infrastructure for Networked Embedded Sys-
tems. InProceedings of the 7th International Conference on Advances in Mobile
Computing & Multimedia (MoMM-09). ACM, December 2009.

1004 Anais

